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The NATO Science and Technology Organization  
 

Science & Technology (S&T) in the NATO context is defined as the selective and rigorous generation and application of 
state-of-the-art, validated knowledge for defence and security purposes. S&T activities embrace scientific research, 
technology development, transition, application and field-testing, experimentation and a range of related scientific 
activities that include systems engineering, operational research and analysis, synthesis, integration and validation of 
knowledge derived through the scientific method. 

In NATO, S&T is addressed using different business models, namely a collaborative business model where NATO 
provides a forum where NATO Nations and partner Nations elect to use their national resources to define, conduct and 
promote cooperative research and information exchange, and secondly an in-house delivery business model where S&T 
activities are conducted in a NATO dedicated executive body, having its own personnel, capabilities and infrastructure.  

The mission of the NATO Science & Technology Organization (STO) is to help position the Nations’ and NATO’s S&T 
investments as a strategic enabler of the knowledge and technology advantage for the defence and security posture of 
NATO Nations and partner Nations, by conducting and promoting S&T activities that augment and leverage the 
capabilities and programmes of the Alliance, of the NATO Nations and the partner Nations, in support of NATO’s 
objectives, and contributing to NATO’s ability to enable and influence security and defence related capability 
development and threat mitigation in NATO Nations and partner Nations, in accordance with NATO policies.   

The total spectrum of this collaborative effort is addressed by six Technical Panels who manage a wide range of 
scientific research activities, a Group specialising in modelling and simulation, plus a Committee dedicated to 
supporting the information management needs of the organization. 

• AVT Applied Vehicle Technology Panel  

• HFM Human Factors and Medicine Panel  

• IST Information Systems Technology Panel  

• NMSG NATO Modelling and Simulation Group  

• SAS System Analysis and Studies Panel  

• SCI Systems Concepts and Integration Panel  

• SET Sensors and Electronics Technology Panel  

These Panels and Group are the power-house of the collaborative model and are made up of national representatives as 
well as recognised world-class scientists, engineers and information specialists. In addition to providing critical 
technical oversight, they also provide a communication link to military users and other NATO bodies. 

The scientific and technological work is carried out by Technical Teams, created under one or more of these eight 
bodies, for specific research activities which have a defined duration. These research activities can take a variety of 
forms, including Task Groups, Workshops, Symposia, Specialists’ Meetings, Lecture Series and Technical Courses. 
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Glossary 

Ambiguity The quality of being open to more than one interpretation; inexactness [1]. 

Artificial Intelligence Intelligence exhibited by machines. 

A branch of computer science dealing with the simulation of intelligent behaviour 
in computers. 

The capability of a machine to imitate intelligent human behaviour. 

The ability of machines to match humans in terms of learning, reasoning, planning 
and acting in complex cyber-physical environments. 

The study of “intelligent agents”: any device that perceives its environment and 
takes actions that maximize its chance of success at some goal. 

When a machine mimics “cognitive” functions that humans associate with other 
human minds, such as “learning” and “problem solving”. 

The science of making computers do things that require intelligence when done by 
humans. 

The ability of a computer program or a machine to think and learn. 

A field of study which tries to make computers “smart”. 

Backward Chaining Starting with something one wants to prove, finding implication sentences that 
would allow him/her to conclude it, and then attempting to establish their premises 
in turn [2].  

Completeness An inference procedure is complete if it can find a proof for any sentence that is 
entailed [2].  

Data Individual observations, measurements, and primitive messages from the lowest 
level of abstraction. Human communication, text messages, electronic queries, or 
scientific instruments that sense phenomena are the major sources of data. The 
term evidence (data that is determined to be relevant) is frequently used to refer to 
elements of data [3].  

Deduction Reasoning about premises to derive conclusions [3].  

Domain A domain is a body of knowledge [4]. 
In knowledge representation, a domain is a section of the world [2]. 

Expert A person who has (or is recognized by peers as having) expertise in a certain 
area [5].  
In general, the term expert connotes both specialization in narrow problem-solving 
areas or tasks and substantial competence [4], [6].  
An expert can solve problems that most people cannot solve, or can solve them 
more efficiently (but not as cheaply) [5].  
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Expertise Expertise is a specialized type of knowledge that is known only to a few. It is not 
commonly found in public sources such as books and papers. Instead, expertise is 
the extensive, task-specific and implicit knowledge of the expert that is acquired 
from training, reading, and experience [5].  

Expert System An intelligent computer program that uses knowledge and inference procedures to 
solve problems that are difficult enough to require significant human expertise for 
their solution [5].  
The user supplies facts or other information to the expert system and receives 
expert advice or expertise in response [5].  

Forward Chaining Reasoning from facts to the conclusion(s) resulting from those facts [5].  

Graph Mathematical structure used to model pairwise relations between objects [7]. 
A graph in this context is made up of vertices (also called nodes or points) which 
are connected by edges (also called links or lines). 

Inference Engine A software component that reasons its way to the solutions of problems, with its 
search guided by the contents of a knowledge base. It must include provisions for 
setting goals, representing and recording intermediate results, and managing 
memory and computational resources [4].  

Inference Procedure Given a knowledge base KB, an inference procedure can generate new sentences 
that purport to be entailed by KB, or, given a knowledge base KB and another 
sentence, an inference procedure can report whether or not the sentence is entailed 
by the KB [2].  

Information Organized sets of data. The organization process may include sorting, classifying, 
or indexing and linking data to place data elements in relational context for 
subsequent searching and analysis [3].  

Information Fusion The process of utilizing one or more information sources over time to assemble a 
representation of aspects of interest in an environment [8]. 

Interpretation Say what fact a sentence corresponds to. A systematic relationship between 
sentences and facts [2].  
A sentence is true under a particular interpretation if the state of affairs it 
represents is the case [2].  

Knowledge A relation between a knower and a proposition [9].  
The fact or condition of knowing something with a considerable degree of 
familiarity through experience, association or contact [10].  
A dynamic human process of justifying human belief toward the truth [11].  
The codified experience of agents. Codified emphasizes that knowledge is written. 
Experience emphasizes that knowledge is created and used in experiential 
situations. Agents undergo experiences [4].  



  

STO-TR-IST-ET-111 ix 

Information once analysed, understood, and explained is knowledge, or 
foreknowledge (predictions or forecasts). Understanding information provides: 

1) A degree of comprehension of both the static and dynamic relationships of 
the objects of data; 

2) The ability to model structures; and  

3) Past (and future) behaviour of those objects.  

Knowledge includes both static content and dynamic processes [3].  

Knowledge Acquisition The process of collecting, extracting, transferring, accumulating, structuring, 
transforming and organizing knowledge (e.g., problem-solving expertise) from one 
or more knowledge sources (human experts, books, documents, sensors, or 
computer files) for constructing or expanding a knowledge base [6].  

Knowledge Base The organized repository for the collection of knowledge related to a domain and 
used for understanding, formulating, and solving problems in a knowledge-based 
system [4].  

A collection of symbolic structures representing what a system believes and 
reasons with during its operation [9].  

A set of representation of facts about the world [2].  

Contains the knowledge with which the inference engine draws conclusions [5].  

Knowledge-Based  A computer system that represents and uses knowledge to carry out a task [4]. 
System  A knowledge-based system is composed of a knowledge base and an inference 

mechanism. It operates by storing sentences about the world in its knowledge 
base, using the inference mechanism to infer new sentences, and using them to 
decide what action to take [2].  

Knowledge Engineer Someone who investigates a particular domain, determines what concepts are 
important in that domain, and creates a formal representation of the objects and 
relations in the domain [2]. 

Knowledge Engineering The process of building a knowledge base. It deals with knowledge acquisition, 
knowledge representation, knowledge validation, inferencing, explanation and 
justification, and maintenance [2]. 

Knowledge Graph A programmatic way to model a knowledge domain with the help of 
subject-matter experts, data interlinking, and machine learning algorithms [12].  

A knowledge graph acquires and integrates information into an’ 
ontology and applies a reasoner to derive new knowledge [13].  

Knowledge The field of study concerned with using formal symbol to represent a collection of 
Representation propositions believed by some putative agent [9]. 

Expressing knowledge in computer-tractable form, such that it can be exploited [2]. 

Finding a language in which to encode knowledge so that the machine can use it [14].  
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Knowledge The area of artificial intelligence concerned with how knowledge can be represented 
Representation and  symbolically and manipulated in an automated way by reasoning programs [9]. 
Reasoning   

Logic The study of entailment relations [9]. 

A language, Provided the syntax and semantics are defined precisely [2].  

Meaning What a sentence states about the world, that the world is this way and not that 
way [2]. 

Model A world in which a sentence is true under a particular interpretation is called a 
model of that sentence under that interpretation [2]. 

Monotonicity A logic is monotonic if when we add some new sentences to the knowledge base, 
all the sentences entailed by the original KB are still entailed by the new larger 
knowledge base [2]. 

Ontology A formal, explicit specification of a shared conceptualization [15]. 

Ontological The set of activities that concern the ontology development process, the ontology  
Engineering  life cycle, the methods and methodologies for building ontologies, and the tool 

suites and languages that support them [16].  

Proposition The idea expressed by a simple declarative sentence [9]. 

An abstract entity that can be true or false, right or wrong, factual or nonfactual [9]. 

A classification of all the different ways one can imagine the world to be [9].  

Reasoning / Inference Using the faculty of reason so as to arrive at conclusions [10].  

To discover, formulate, or conclude by the use of reason [10].  

To derive as a conclusion from facts or premises [10].  

The formal manipulation of symbols representing a collection of believed 
propositions to produce representations of new ones [9].  

Determining what follows from what the knowledge base has been told [2].  

Any process by which conclusions are reached [2].  

Representation A relationship between two domains [9]. 

The assignment of meaning to symbols [4].  

Semantics Specify what the well-formed expressions are supposed to mean [9]. 

Determines the facts in the world to which the sentences refer. Each sentence 
makes a claim about the world [2].  

Situation Analysis A process, the examination of a situation, its elements, and their relations, to 
provide and maintain a product, i.e., a state of situation awareness for the decision 
maker(s) [17]. 
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Situation Awareness The perception of the elements in the environment within a volume of time and 
space, the comprehension of their meaning and the projection of their status in the 
near future [18]. 

Symbol A character or group of characters taken from some predetermined alphabet [9].  

Syntax Specify which groups of symbols, arranged in what way, are to be considered 
properly formed [9].  
Describes the possible configurations that can constitute sentences [2].  

Taxonomy The branch of science concerned with classification, especially of organisms; 
systematics [19].  

Uncertainty Uncertainty refers to epistemic situations involving imperfect or unknown 
information [20]. It applies to predictions of future events, to physical 
measurements that are already made, or to the unknown. Uncertainty arises in 
partially observable and/or stochastic environments, as well as due to ignorance, 
indolence, or both. 

Validity (Tautology) A sentence is valid or necessarily true if and only if it is true under all possible 
interpretations in all possible worlds, i.e., regardless of what it is supposed to mean 
and regardless of the state of affairs in the universe being described [2].  
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Knowledge Representation and Reasoning –  
A Review of the State of the Art  

and Future Opportunities  
(STO-TR-IST-ET-111) 

Executive Summary 

This report presents the findings of NATO Information Systems Technology (IST) Exploratory Team 111 
(ET-111). ET-111 was formed to share understanding across NATO nations on the status of Knowledge 
Representation and Reasoning (KRR) in order to understand the state of the art and to consider if future 
collaborative activities would be beneficial. 

In support of high level data fusion there is now a foundational need for information and knowledge to be 
understandable by humans and machines. Knowledge representation is the expression of knowledge 
in computer-tractable form in order for it to be exploited. A key but not sole reason for doing this is so that 
the knowledge can be reasoned over. Knowledge-based systems might also be referred to as symbolic AI and 
rule-based AI, and have been an active area of research for over five decades. As such, it might be 
considered by some as ‘old-school’ AI, differing from the algorithmic, machine-learning-based approaches 
to AI that have grown in prominence in recent years (and which are known to suffer from problems with 
explainability and generalisation). In the age of ‘big data’, knowledge representation and reasoning provides 
an avenue for the exploitation of data which is flexible, explainable, and grounded in human knowledge. 

The first aim of this review was to provide a technical introduction to the field of knowledge representation 
and reasoning. Providing the reader with knowledge of key concepts ‒ to nurture understanding ‒ will enable 
an appreciation of the capabilities of knowledge systems. The second aim is to provide ‒ by example ‒ 
a working grasp of the processes one must utilise in order to create a knowledge system, and how such 
systems can be used in a military context to solve real-world problems. An understanding of such real-world 
problems to which knowledge systems are best applied should facilitate successful implementation and 
integration of KRR with NATO systems and doctrine. 

In this report, we begin by discussing some of the challenges for NATO member nations, and how 
knowledge representation and reasoning in NATO may be expected to have an influence on these areas. 
We then provide a summary of the technical aspects of knowledge representation, knowledge engineering 
and methods for reasoning. We discuss specific examples of knowledge representation such as the 
MIP Information Model (MIM), the Rich Event Ontology (REO), OPIS, and the Defense Intelligence Core 
Ontology (DICO). We also describe the WISDOM R&D platform and the Intelligent Situational Awareness 
(INSANE) framework as examples of using knowledge representation to support sense making. 

Following this we review wider research, including how text analytics can support the extraction of 
knowledge from reports and other sources of text, work on causality and the problems of explainability and 
trust in reasoning systems. 

Finally, we conclude with a summary of the findings of the report and the implications this for the Alliance 
presenting key recommendations for further work: 
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• Recommendation 1 ‒ The NATO STO sponsors a technical activity to demonstrate the 
complementary use of symbolic and sub-symbolic methods and their benefit to improved 
decision making. 

• Recommendation 2 ‒ The NATO STO sponsors a virtual lecture series/workshop to increase the 
awareness of KRR technologies in the science and operational sectors of NATO, in order to provide 
a catalysis for further skills development in this area. 

• Recommendation 3 ‒ The NATO STO sponsors a dedicated Exploratory Team to consider specific 
interests in causal modelling and its application to knowledge-based systems, as a possible precursor 
to future practical demonstrations under activities such as that against Recommendation 1. 
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Représentation des connaissances et raisonnement – 
revue de l’état de la technique  

et opportunités futures 
(STO-TR-IST-ET-111) 

Synthèse 
Le présent rapport expose les conclusions de l’équipe exploratoire 111 (ET-111) de la commission OTAN 
sur la technologie des systèmes d’information (IST). L’ET-111 a été constituée pour confronter les différents 
points de vue des pays de l’OTAN sur le statut de la représentation des connaissances et du raisonnement 
(KRR), afin de comprendre l’état de la technique et d’étudier si de futures activités en collaboration 
seraient bénéfiques. 

La fusion de données à haut niveau s’inscrit désormais dans un contexte où il est fondamental 
que les humains et les machines puissent comprendre les informations et les connaissances. 
La représentation des connaissances est l’expression des connaissances sous une forme pouvant être 
exploitée par un ordinateur. La possibilité de raisonner à partir de ces connaissances est l’une des raisons 
essentielles de cette représentation, mais non la seule. Les systèmes basés sur les connaissances peuvent 
également être appelés IA symbolique et IA basée sur des règles et constituent un domaine de recherche 
active depuis plus de cinquante ans. En tant que tels, ils pourraient être considérés comme une IA 
« à l’ancienne », se distinguant des approches algorithmiques de l’IA basées sur l’apprentissage automatique, 
qui ont pris de l’importance ces dernières années. À l’ère des « données massives », la représentation 
des connaissances et le raisonnement constituent un moyen d’exploiter les données qui est flexible, 
explicable et enraciné dans les connaissances humaines. 

Le premier objectif de la présente revue est de fournir une introduction technique au domaine 
de la représentation des connaissances et du raisonnement. La connaissance des concepts essentiels, 
favorisant la compréhension, permettra au lecteur d’apprécier les capacités des systèmes de connaissances. 
Le deuxième objectif est de fournir, au moyen d’exemples, une appréhension pratique i) des processus 
à utiliser pour créer un système de connaissances et ii) de la manière dont ces systèmes peuvent servir 
dans un contexte militaire pour résoudre des problèmes réels. La compréhension des problèmes réels 
auxquels les systèmes de connaissances sont le plus efficacement appliqués devrait faciliter la mise en œuvre 
et l’intégration de la KRR dans les systèmes et la doctrine de l’OTAN. 

Dans ce rapport, nous commençons par discuter de quelques défis qui se présentent aux pays de l’OTAN 
et de la façon dont la représentation des connaissances et le raisonnement au sein de l’OTAN pourraient 
avoir une influence sur ces questions. Nous résumons ensuite les aspects techniques de la représentation 
des connaissances, du génie de la connaissance et des méthodes de raisonnement. Nous discutons 
d’exemples particuliers de représentation des connaissances, tels que le modèle d’information du MIP 
(MIM), l’ontologie d’événements riche (Rich Event Ontology, REO), OPIS et l’ontologie essentielle 
du renseignement de la défense (Defense Intelligence Core Ontology, DICO). Nous décrivons également 
la plateforme de R&D WISDOM et le cadre de connaissance intelligente de la situation 
(Intelligent Situational Awareness, INSANE) en tant qu’exemples d’utilisation de la représentation 
des connaissances pour faciliter l’attribution d’un sens. 
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À la suite de cela, nous passons en revue la recherche dans son ensemble, notamment la manière dont 
l’analyse de texte peut favoriser l’extraction de connaissances à partir de rapports et d’autres sources 
de texte, le travail sur la causalité et les problèmes d’explicabilité et de confiance dans les systèmes 
de raisonnement. 

Enfin, nous résumons les conclusions du rapport et leurs implications pour l’Alliance, en présentant 
des recommandations clés pour les travaux ultérieurs : 

• Recommandation n° 1 – Que la STO de l’OTAN parraine une activité technique pour démontrer 
l’utilisation complémentaire des méthodes symboliques et sous-symboliques et leur avantage sur 
le plan de l’amélioration des décisions. 

• Recommandation n° 2 – Que la STO de l’OTAN parraine une série de conférences ou un séminaire 
virtuels, afin d’augmenter la connaissance des technologies de KRR dans les secteurs scientifique et 
opérationnel de l’OTAN, de manière à catalyser le développement ultérieur de compétences dans ce 
domaine. 

• Recommandation n° 3 – Que la STO de l’OTAN parraine une équipe exploratoire étudiant l’intérêt 
de la modélisation causale et son application aux systèmes basés sur les connaissances, comme 
préalable à d’éventuelles démonstrations pratiques dans le cadre d’activités telles que celles 
de la recommandation n° 1. 
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Chapter 1 – INTRODUCTION 

1.1 INFORMATION ‘IN WAR’ 

“…a wealth of information creates a poverty of attention…” 

Herbert A. Simon, 1971, economist, psychologist and Nobel Prize winner [1]. 

With an ever increasing number of capabilities, sensors, feeds and other data one of the most pressing 
challenges facing defence is the ability to reliably and quickly sift, fuse and act on the most pertinent 
observations and information. The importance of information is manifest in all of NATO’s strategic 
priorities [2]. Russia’s threat to Euro-Atlantic security is one based on disinformation intended to 
undermine strategic relationships (e.g., European Union, NATO, etc.); the fight against terrorism, in all its 
forms and manifestations, is now predicated on being able to connect both classified and open source 
material to identify connections and behaviours against which action can be taken, and; the cyber threat is 
one principally fought in information space. 

NATO’s acquisition of the Alliance Ground Surveillance (AGS) system represents a significant 
enhancement to NATO’s capability to provide rich data feeds in support of its future operations [3]. But it 
is recognised, in concepts such as the UK’s “Information Advantage”, that a real advantage can now only 
be achieved by the timely and effective fusion of such data feeds. 

Of course, the challenge of dealing with information overload is not limited to defence. The worlds of 
finance, advertising and engineering, to name a few, are embracing the opportunities to improve decision 
making, target services and increase the pace at which new solutions can be delivered. In recent years the 
potential of applying Machine Learning (ML) approaches to these challenges has caught the imagination 
of the public, investors and senior leaders around the world. As a result such ML methods are now 
demonstrating their potential against defence challenges, including object detection and labelling in 
imagery and video feeds, text analysis to extract entities and relationships and speech detection and 
translation. Building on the revolution in computational power, data availability and access to 
computational frameworks the explosion of interest in data and Artificial Intelligence (AI) is now 
considered a turning point for how Defence works, and is recognised as being comparable to the first 
aircraft or nuclear weapons [4]. 

As a result, Defence capabilities will increasingly be able to deal with the most critical information 
streams, saving analyst time and increasing their capacity to quickly develop and retain situational 
awareness. Nevertheless, as the attention of human analysts also becomes stretched by the activities of 
operating and warfighting in a time of persistent competition [5], there remains a need to continually 
improve their ability to connect subtle but significant observations across multiple domains. For example, 
as operations look to routinely apply full spectrum effects, the interconnection of observations between the 
physical, social and cyber domains will be increasingly important, but such connections may not be easily 
discernible without supporting analytical capabilities. Importantly it will be vital to connect such 
observations to past knowledge and the inherent expertise of those involved and the experience of those 
before them. 

1.2 UNDERSTANDING AND INFORMATION FUSION 

Complexity has always existed in natural and biological realms. However, with advances in sciences and 
technology, humanity is now capable of building artefacts whose complexity approaches those of life itself. 
There is a need to use advanced methods to tackle this complexity. 
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This complexity stems from tremendous increases in speed, density, and spatial scope of data, alongside a 
coupling between an ever increasing range of elements, some natural, and many synthetic. Approaches to 
cope with the complexity of situations is a core defence challenge. We are faced with the rapid evolution of 
technology providing more data, information and capabilities combined with challenging terrains e.g., urban 
environments and the “human terrain” involving insurgents, mixed populations, non-government 
organisations and failed states. These complex situations actually, more than ever, require timely decisions to 
overmatch the threat, and decision quality will always be closely associated to the level of situation 
comprehension. That comprehension, challenged by such rapid operational and technological changes, 
requires new approaches for the better and faster disentangling of complex situations. While the Human 
mindset is still deeply rooted in the classical concept of reductionism, in which a problem is solved by 
decomposing it into sub-problems, it is now recognised that approaching complexity in an effective way 
cannot be isolated from a reductionism approach. 

National concepts such as the UK’s Information Advantage [6] concept have sought to catalyse the role of 
information in defence operations, emphasising the need to innovate or risk “withering” and losing pace with 
adversaries. The US Augmenting Intelligence with Machines (AIM) initiative [7] also offers a strategic 
viewpoint and emphasises the role of AI and ML in future intelligence capabilities. Of particular note to 
IST-ET-111 the AIM initiative makes a priority of basic research advances in representing knowledge. 

The high level technical challenge in achieving both low and high level data fusion has been well defined 
over the years by the JDL Fusion Model [8]. However, comprehensive solutions, in particular for high level 
data fusion, remain absent and the subject of ongoing research and development. 

The challenge of information fusion extends to almost all aspects of defence from logistics to personnel 
management, platform maintenance and medical treatment. However, in a NATO context with a focus on 
coalition operations such as those in Afghanistan it is perhaps most pertinent to consider the challenge of 
achieving situational awareness to support Command and Control (C2) and intelligence functions. Such 
activities are characterised by the need to: 

• Draw together primary observations and less tangible information and knowledge (hard/soft fusion); 

• Bring together information from multiple domains and often at multiple classifications; 

• Make decisions on limited information and at high tempo; and 

• Deal with uncertainty, ambiguity and ever changing information. 

The primary authors and consumers of the outputs of C2 and intelligence activities are human analysts and 
warfighters, but as NATO forces make more use of automation and autonomous systems the role of 
machines in supporting, augmenting and exploiting underpinning situational awareness and high level fusion 
activities will be increasingly important to consider.  

1.3 THE ROLE OF KNOWLEDGE REPRESENTATION AND REASONING 

In support of such high level fusion there is now a foundational need for information and knowledge to be 
understandable by humans and machines. By doing this it becomes possible to apply machine reasoning 
(inferencing) methods, which apply rules and formal logic to available data in order to offer higher order 
deductions. Knowledge representation is the expression of knowledge in computer-tractable form in order 
for it to be exploited. A key but not sole reason for doing this is so that the knowledge can be reasoned over. 
Knowledge-based systems are also referred to by terms such as symbolic AI and rule-based AI, and have 
been an active area of research for over five decades. 
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Knowledge representation and the desire to reason against this knowledge lies at the heart of three of 
NATO’s seven Emerging and Disruptive Technologies (EDTs): data, AI and autonomy, each of which 
overlap and support the other [9]. 

Of course, it is the most recent interest in “machine learning” (also known as sub-symbolic) methods, 
focusing on computational approaches such as neural networks, which has been at the forefront of the public 
narrative of AI, often seeing the terms ML and AI used interchangeably. Such systems have proven their 
value in multiple applications such as product recommender systems, the prediction of traffic patterns and 
loan approvals. The use of ML to support content-based analytics of multiple data types (imagery, video, text 
and social media) was the core interest of the now completed IST-RTG-144 (Multi-content analytics). 
The team clearly demonstrated the potential for individual modalities to be analysed, and the opportunity 
to combine those analytics within the wider intelligence cycle, but it did not consider the 
automated/semi-automated fusion or reasoning against observations to support the goals of high level fusion. 

ML approaches generally capitalise on large volumes of data to develop models to associate outputs to 
inputs. For some classes of task, such as imagery labelling, ML is a proven application, but even leaders in 
AI systems are cautious, if not critical in its success [10]. The representation and inclusion of knowledge 
with ML approaches (so called neuro-symbolic approaches) could be a potential step in increasing the 
robustness and performance of future solutions. 

As such, a fundamental step towards this goal is to establish effective knowledge representation (symbolic 
representation) that can be used by future hybrid systems. Symbolic methods may be more adept at dealing 
with sparse data, support enhanced explainability and incorporate past human knowledge, and using 
computational methods which excel at pattern recognition and data clustering/classification problems. 
However, if such approaches/technologies are to support future coalition operations, joined up effort is 
required. This includes the: 

• Development of domain specific ontologies (defined vocabularies for specific domains); 
• Deployment and assessment of inferencing capabilities; 
• Building effective architectures for event driven processing; 
• Handling uncertainty and ambiguity in observations; 
• Information sharing and observation provenance; and 
• Approaches for federated deployment and coping with scale. 

1.4 AIMS AND OBJECTIVES OF IST-ET-111 

It is in this context that NATO IST-ET-111 “Knowledge Representation and Reasoning” was proposed, with 
the aim of pooling understanding across interested NATO partners on the status of KRR in order to 
understand the state of the art and to consider if future activities might be required. 

By establishing the current state of the art and the technical capabilities across NATO nations the IST-ET-111 
team hopes this report will support a conversation around the most effective ways to achieve effective 
human-machine teams. The establishment of an Exploratory Team is also a step in identifying how other 
NATO nation science and technology activities might be leveraged for near term and long term 
operational benefit. 

Ultimately we anticipate the effective use of KRR could result in: 
• Quicker decision making to stay within a potential adversary’s OODA loop; 
• More robust AI systems capable of dealing with new information and handling uncertainty; 
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• Transparent system that give sufficiently understandable and assessable output; 
• The retention of subject matter expertise as staff rotate through operations or as operations close, 

but then allowing the more rapid stand up of previous capabilities; and 
• Greatly expanded ability to leverage and discern knowledge from existing data holdings. 

1.5 APPROACH AND THE STRUCTURE OF THIS REPORT 

This report is aimed at the wider NATO STO community and national representatives who: 
• May be required to lead technology change initiatives and may benefit from using KRR methods 

and approaches in military contexts; 
• Need to implement new solutions to make better use of information and knowledge; and 
• May have expertise in ML and be seeking additional approaches to increase the robustness 

and explainability of results. 

Firstly, this report focuses on the core concepts of knowledge representation (Chapter 2), recognising the 
first step in exploiting knowledge-based methods is having the means to represent knowledge, before then 
moving to approaches for reasoning over knowledge, or in other words the methods to deduce new 
knowledge from that which we already know. The report then moves on to the issues of implementing KRR 
approaches (Chapter 3), using specific examples to illustrate the issues involved. Finally, we present a short 
discussion on active research themes (Chapter 4) prior to offering conclusions and recommendations 
(Chapter 5). 
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Chapter 2 – KNOWLEDGE REPRESENTATION  
AND REASONING – CORE CONCEPTS 

2.1 INTRODUCTION 

In the following section we discuss what is meant by Knowledge Representation and Reasoning (KRR). 
We begin by introducing the concept of knowledge and knowledge systems. We conclude this section on the 
relationship between the ‘old-school’ AI of KRR and recent advances in ML (particularly deep learning). 

2.2 DEFINING KNOWLEDGE AND KNOWLEDGE SYSTEMS 

Knowledge is one of those words that everyone knows the meaning of, yet finds hard to define. Other words 
such as data, facts and information are often used interchangeably with knowledge. However, the majority of 
academics and knowledge management authorities make a distinction between these related, but discrete 
terms [1] (see Figure 2-1). 

 

Figure 2-1: Distinguishing Knowledge, Information and Data (Adapted from Ref. [2]). 

In creating knowledge the act of understanding information provides:  

1) A degree of comprehension of both the static and dynamic relationships of the objects represented 
by the data;  

2) The ability to model structures; and  

3) Past (and future) behaviour of those objects.  

Knowledge includes both static content and dynamic processes.  
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Knowledge, as the word is used for knowledge systems, refers to the codified experience of agents. Codified 
emphasises that knowledge is written (recorded). Experience emphasises that knowledge is created and used 
in experiential situations. Agents undergo experiences. 

The term knowledge system is a shorthand for the term knowledge-based system [3]. A knowledge system is 
a computer system that represents and uses knowledge to carry out a task. An expert system is an intelligent 
computer program that uses knowledge and inference procedures to solve problems that are difficult enough 
to require significant human expertise for their solution [4]. As the applications for the technology have 
broadened, the more general term knowledge system has become preferred by some people over expert 
system because it focuses attention on the knowledge that the systems carry, rather than on the question of 
whether or not such knowledge constitutes expertise. Figure 2-2 illustrates the basic concept of a 
knowledge-based (expert) system. 

User
Facts

Expertise

Inference
Engine

Knowledge
Base

Expert System

 

Figure 2-2: Basic Concept of a Knowledge-Based (Expert) System Function. 

A knowledge-based system has by design the ability to be told facts about its world and adjust its behaviour 
correspondingly, thus the advantages of knowledge-based systems include that one can [5]: 

• Add new tasks and easily make them depend on previous knowledge; 

• Extend the existing behaviour by adding new beliefs; 

• Debug faulty behaviour by locating the erroneous beliefs of the system; and, 

• Concisely explain and justify the behaviour of the system. 

A knowledge base is the organised repository for the collection of knowledge related to a domain and used 
for understanding, formulating, and solving problems in a knowledge-based system. Once a knowledge base 
is built, AI techniques are used to give the computer an inference capability based on the facts and 
relationships contained in the knowledge base. That is, the knowledge base contains a data structure that can 
be manipulated by an inference system that uses search and pattern matching techniques on the knowledge 
base to answer questions, draw conclusions, or otherwise perform an intelligent function. 

2.3 EXPERTISE AND KNOWLEDGE ENGINEERING 

Expertise is a specialised type of knowledge that is known only to a few [6]. It is not commonly found in 
public sources such as books and papers. In general, the term expert connotes both specialisation in narrow 
problem-solving areas or tasks and substantial competence [5], [7]. An expert’s knowledge is specific to one 
problem domain, as opposed to knowledge about general problem-solving techniques. Expertise in one 
problem domain does not automatically carry over to another. Expert systems are generally designed to be 
experts in one problem domain. In fact, restricting the problem domain is typically necessary to produce 
useful solutions. Experts heavily rely on a vast knowledge of heuristics and the experience they have built up 
over the years. If an expert cannot solve a problem based on expertise, then he or she must reason from the 
first principles and theory.  
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The process of building a knowledge base is called knowledge engineering [1]. It deals with knowledge 
acquisition, knowledge representation, knowledge validation, inferencing, explanation and justification, and 
maintenance. Figure 2-3 offers a diagrammatic view. A knowledge engineer is someone who investigates a 
particular domain, determines what concepts are important in that domain, and creates a formal 
representation of the objects and relations in the domain [1]. A knowledge engineer is generally not an expert 
in the domain at hand. Knowledge acquisition is the process by which a knowledge engineer collects, 
extracts, transfers, accumulates, structures, transforms and organises knowledge (e.g., problem-solving 
expertise) from one or more knowledge sources (human experts, books, documents, sensors, or computer 
files) for constructing or expanding a knowledge base [5]. 
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Figure 2-3: The Knowledge Engineering Process. 

Unfortunately, acquiring knowledge from experts is a complex task. This process has been identified by 
many researchers and practitioners as a bottleneck that currently constrains the development and 
construction of expert systems and other AI systems. The process of representing knowledge of a domain 
goes through several stages. The following five-step methodology can be used [1]:  

1) Decide what to talk about;  

2) Decide on a vocabulary of predicates, functions, and constants;  

3) Encode general knowledge about the domain;  

4) Encode a description of the specific problem instance; and  

5) Pose queries to the inference procedure and get answers. 

One cannot put the world in a computer, so all reasoning mechanisms must operate on representations of 
facts, rather than on the facts themselves [1]. The object of knowledge representation is to express 
knowledge in computer-tractable form, such that it can be exploited. Knowledge representation research 
studies the problem of finding a language in which to encode knowledge so that the machine can use it [8]. 
It should support the tasks of acquiring and retrieving knowledge, as well as subsequent reasoning [5]. 
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A language is a set of expressions and a set of combinatory rules. There are many types of languages; of 
particular interest are knowledge representation languages. A good knowledge representation language 
should combine the advantages of natural languages and formal languages [1]; it should be expressive and 
concise, be unambiguous and independent of context. A language is defined by two aspects: syntax and 
semantics [1]; the syntax describes the possible configurations that can constitute sentences, while semantics 
is an approach for assigning meanings to symbols and expressions. From the syntax and semantics, an 
inference mechanism can be derived that uses the language. A representation is formal when its symbols are 
interpretable by a computer program that uses them to guide its activity in carrying out a task. 

One may have the impression that a knowledge engineer must find a single best representation and stick with 
it. However, it is not necessary to select and use a single representation in knowledge systems. Actually, no 
single knowledge representation method is ideally suited by itself for all tasks [5]. An important alternative is 
the use of multiple representations. A variety of knowledge representation paradigms, schemes and 
techniques have been devised over the years. These includes ontologies, knowledge graphs, lists and 
outlines, decision tables, decision trees, state and problem spaces, production rules, object-attribute-value 
triples, semantic networks, schemata, frames, scripts, logics, etc. 

In the knowledge representation domain, a lot of attention has been devoted to ontologies and ontological 
engineering [9]. The word ontology was taken from Philosophy, where it broadly means a systematic 
explanation of being. The definition: “An ontology is a formal, explicit specification of a shared 
conceptualization” (Studer, Benjamins et al. [10] and based on the work of Thomas [11]) seems appropriate 
for the development of knowledge-based systems. 

The ontology community distinguishes lightweight and heavyweight ontologies [9]; lightweight ontologies 
include concepts, concept taxonomies, relationships between concepts, and properties that describe concepts, 
while heavyweight ontologies add axioms and constraints. Finally, different knowledge representation 
techniques can be applied to model ontologies, although not all of them can represent the same knowledge 
with the same degree of formality and granularity. One of the key decisions to take in the ontology 
development process is to select the language (or set of languages) in which the ontology will be 
implemented. One benefit of using current W3C standards for ontology development is that the modelling 
conventions allow for the co-existence of synonym terms and multiple definitions for terms so that different 
domains of knowledge or different communities of experts can be more closely aligned through the model. 

2.4 INFERENCING AND REASONING 

In this section, we turn from the ways we can create formal representations of knowledge to the ways we can 
reason with our knowledge and related information that has been formally organised. We start with some 
brief definitions and then move to talk about the various approaches. 

To reason is:  
1) To use the faculty of reason so as to arrive at conclusions; or  
2) To discover, formulate, or conclude by the use of reason [12].  

Similarly, to infer is to derive a conclusion from facts or premises. The terms reasoning and inference are 
generally used to cover any process by which conclusions are reached. The term inference is generally used 
for mechanical systems such as expert systems, while reasoning is generally used in human thinking.  

Once the knowledge representation in a knowledge base is completed, or is at least at a sufficiently high 
level of accuracy, it is ready to be used for reasoning tasks. One needs a computer program to access the 
knowledge for making inferences. This program is usually called the inference engine or the control 
program. It is used to direct the search through the knowledge base and to control the reasoning process.  



KNOWLEDGE REPRESENTATION AND REASONING – CORE CONCEPTS 

STO-TR-IST-ET-111 2 - 5 

Two general methods of inferencing are commonly used as problem-solving strategies: forward chaining 
and backward chaining. Forward chaining (also known as bottom up reasoning) is reasoning from facts to 
the conclusion(s) resulting from those facts. Its inference processes are not directed toward solving any 
particular problem; for this reason it is also called a data-driven or data-directed procedure. Backward 
chaining starts with something one wants to prove, find implication sentences that would allow him/her to 
conclude it, and then attempt to establish their premises in turn. Backward chaining thus involves 
“reasoning in reverse”. It is normally used when there is a goal to be proved. It is also called a goal-driven 
or goal-directed procedure, in which one starts from an expectation (hypothesis), then seek evidence that 
supports (or contradicts) the expectation. Reasoning from the higher-level constructs such as hypotheses 
down to the lower-level facts which may support the hypotheses is called top-down reasoning. Whether 
forward or backward chaining is better depends on the purpose of the reasoning and the shape of the 
search space. For example, if the goal is to discover all that can be deduced from a given set of facts, the 
system should run forward. In some cases, the two strategies can be mixed (i.e., bidirectional chaining). 

The standard patterns of in inferencing are based on philosophical underpinnings defined over 2000 years 
ago. Modus ponens (Latin for mode that by affirming affirms) and modus tollens (Latin for “mode that by 
denying denies”), among other patterns, offer rules that provide the basic building blocks of propositional 
logic. Based on these rules, and many others, a variety of approaches have been devised and used to 
achieve reasoning/inference in computer-based systems. Figure 2-4 describes typical approaches. 

 

Figure 2-4: Representation Approaches for Reasoning and Inferencing. 

2.5 KNOWLEDGE GRAPHS 

Straddling graph theory and web science, the concept of the knowledge graph has emerged as a means of 
bringing together known ‘facts’ (or axioms) regarding some domain of discourse. Knowledge graphs have 
become the most important denominator in successful search engines on the World Wide Web. Social 
network sites (e.g., Facebook, etc.) and e-commerce sites (e.g., Amazon, etc.) are also using knowledge 
graphs to store and retrieve useful information. 
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There is no well-established definition of knowledge graphs, further discussion can be found in Ref. [13]. 
The following might be considered key characteristics for a knowledge graph in the context of ET-111: 

• That information and knowledge can be captured in a structured representation without the need for 
a rigid, proscriptive schema; 

• Where a formal, explicit descriptive model of a domain is required, the structure of the knowledge 
graph can be specified using formal ontology, which gives robust semantic descriptions of the 
classes and relationships within the domain of discourse; and  

• That individual entities (individuals or instances) within a knowledge graph can then be described in 
terms of the classes and relationships defined by an ontology. 

Knowledge graphs may also be considered examples of semantic networks, which when applied and 
combined to the World Wide Web is described as the Semantic Web [14]. 

2.6 SEMANTIC ENABLEMENT AND INTEROPERABILITY 

A key application for ontologies is to provide the semantic ‘glue’ to enable systems to interoperate, to be 
able to exchange content with no loss of meaning. The principle of interoperability is not new and has for 
many years been accomplished through the use of mappings between one schema and another. So to 
transfer information from System1 to System2, a mapping between the schema of System1 and that of 
System 2 would be produced. This mapping enables exchange to be undertaken in which the content from 
one schema element can be transferred to another schema element. Such direct mappings between 
schemas can become numerous when multiple systems are involved, hence the use of hub and spoke 
models in which a third schema is introduced to act as an intermediary. The use of an intermediary reduces 
the number of schema mappings required from n! to n where n is the number of systems.  

Whilst the use of a hub and spoke model for exchange of information is beneficial, a schema based 
approach focuses on the structure of the information rather than the content; it is not necessarily the case 
that information can be exchanged without loss of meaning. This is known as syntactic interoperability. 
The use of an ontology as the hub for exchange of information allows the semantics as well as the syntax 
of the information to be described, thus enabling semantic interoperability in which information can be 
exchanged without loss of meaning. The process then becomes one of mapping from an internal schema to 
some external ontology which fulfils the role of hub. All systems can map to the ontology and use 
import/export routines to exchange information in a semantically rich and platform agnostic manner. 
A number of ontologies are used in this space including Basic Formal Ontology [15] and its domain 
specific extensions. Recent work in the UK has taken a schema based model and used it as the basis for an 
ontology with the specific aim of providing an ontology driven UK Intelligence Community (UKIC) 
Information Exchange Standard (IES), described in more detail in the use cases section (Figure 2-5).  

Associated with the concept of interoperability is that of enablement. It is often the case that information 
systems make use of internal schema optimised to their purpose. It may not be possible or desirable to 
modify the internal schema of any information system but semantic interoperability is required above and 
beyond import/export which can be achieved by mapping the schema to the ontology. In which case, there 
is a need to put an additional layer on top of the information system to achieve this. This additional 
semantic enablement layer mediates between the external ontology and the internal schema and can be 
achieved in a variety of ways depending on the use case and the style of architecture in use. One such 
approach is Ontology Based Data Access (OBDA) which leverages an ontology and a mapping to the 
source schema, as exemplified by the Ontop framework [16], [17], thereby supporting semantically 
mediated interaction with an underlying information repository. In the geospatial community, a service 
driven approach has been developed building on existing Open Geospatial Consortium (OGC) standards 
for Spatial Data Infrastructures (SDI) of the kind widely in use, including within UK MOD. This approach 
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has focussed on profiling existing geospatial web services to provide a semantic enablement layer [18]). 
Similar approaches have also been explored in domains including Internet of Things (IoT) [19] and Sensor 
Web Enablement [20]. 

 

Figure 2-5: Use of the UKIC IES for Exchange of Information. 

2.7 UNCERTAINTY MANAGEMENT 

In this section, we provide a high level overview of the fundamentals of uncertainty management, in the 
context of KRR. Further detail is provided in Annex E. 

Most tasks requiring intelligent behaviour have some degree of uncertainty associated with them. The type of 
uncertainty that can occur in knowledge-based systems may be caused by problems with the data. For 
example [21]:  

• Data might be missing or unavailable; 

• Data might be present but unreliable or ambiguous due to measurement errors; 

• The representation of the data may be imprecise or inconsistent; 

• Data may just be user’s best guess; and 

• Data may be based on defaults and the defaults may have exceptions.  

The uncertainty may also be caused by the represented knowledge, since it might: 

• Represent best guesses of the experts that are based on plausible or statistical associations they have 
observed; and/or 

• Not be appropriate in all situations (e.g., it may have indeterminate applicability). 

Given such numerous sources of errors, most knowledge-based systems require the incorporation of some 
form of uncertainty management. 

When implementing an uncertainty scheme, one must be concerned with three issues: 

• How to represent uncertain data; 

• How to combine two or more pieces of uncertain data; and 

• How to draw inference using uncertain data. 
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A review of the main typologies proposed in the literature [22] considers a number of problems regarding the 
different types of uncertainty, the different epistemic interpretations, the different mathematical 
representations, in order to better understand and use the existing mathematical formalisms for reasoning 
under uncertainty. 

The term “uncertainty reasoning” is meant to denote the full range of methods designed for representing and 
reasoning with knowledge when Boolean truth values are unknown, unknowable, or inapplicable [23]. 
To illustrate, consider a few reasoning challenges that could be addressed by reasoning under uncertainty: 

• Automated agents are used to exchange information that in many cases is not perfect. Thus, 
a standardised format for representing uncertainty would allow agents receiving imperfect 
information to interpret it in the same way as was intended by the sending agents. 

• Much information is likely to be uncertain. Examples include weather forecasts or gambling odds. 
Canonical methods for representing and integrating such information are necessary for 
communicating it in a seamless fashion. 

• Information is also often incorrect or only partially correct, raising issues related to trust or 
credibility. Uncertainty representation and reasoning helps to resolve tension amongst information 
sources having different confidence and trust levels. 

• Many visions rely on numerous distinct but conceptually overlapping ontologies that co-exist and 
interoperate. It is likely that in such scenarios, ontology mapping will benefit from the ability to 
represent degrees of membership and/or likelihoods of membership in categories of a target 
ontology, given information about class membership in the source ontology. 

• Dynamic composability of services requires runtime identification of processing and data resources 
and resolution of policy objectives. For some such cases, uncertainty reasoning techniques may be 
necessary to resolve situations in which existing information is not definitive. 

• Information extracted from large information networks is typically incomplete. The ability to exploit 
partial information is very useful for identifying sources of service or information. It is clear that 
search effectiveness could be improved by appropriate use of technologies for handling uncertainty. 

As work with semantics and services grows more ambitious, there is increasing appreciation of the need for 
principled approaches to representing and reasoning under uncertainty [24]. 

To model uncertainty, many mathematical tools have been developed, being either qualitative such as modal 
or nonmonotonic logics, or quantitative approaches such as probability theory, fuzzy sets theory, or 
evidential theory [22]. These approaches are often compared on the basis of their different strengths 
and weaknesses: 

• Their suitability to model a particular type of uncertainty; 
• Their requirement for prior knowledge; 
• Their computational time complexity; 
• The need for independence constraints; and 
• Their reasoning capacities. 

2.8 SYMBOLIC VERSUS SUB-SYMBOLIC APPROACHES 
Within AI, we distinguish symbolic from sub-symbolic approaches. Sub-symbolic approaches comprise in 
particular ML techniques, while symbolic approaches apply the techniques outlined above, like, 
e.g., knowledge graphs. 
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We distinguish four classes of sub-symbolic ML approaches, namely supervised learning, unsupervised 
learning, reinforcement learning and hybrid approaches. All of these require a training phase, in which 
models are created from training data or parameters of given but underspecified models are optimised with 
regard to a specific performance criterion. The trained models serve the structuring and understanding of the 
given data (e.g., clustering), predictions based on newly received data (e.g., classification, statistic forecast 
by regression analysis), the target-oriented creation of data (e.g., text or image generation), or the derivation 
of a strategy for performing optimal sequences of actions that lead to a desired result. A variety of 
methodologies for implementing these approaches are on the market, ranging from linear and logistic 
regression, via Bayesian networks, decision trees, support vector machines and random forests, to (deep) 
neural networks, just to name a few. All methodologies require the initial specification of the features for 
which optimisation is to be achieved through training. As the manual specification of these features is 
laborious and can become a bottleneck in the creation of ML systems, feature or representation learning 
approaches are being developed for the further automation of this process. Moreover, to change an 
ML model, it usually has to be trained from scratch again. Even for only slight changes this can require 
enormous effort. Therefore, approaches to the adjustment of trained models, e.g., through lifelong ML [25] 
or transfer learning, are ongoing research challenges.  

Sub-symbolic ML systems are black boxes that make it hard or even impossible for a user to understand how 
and why a certain output has been generated. It is thus at least difficult for a user to validate the output of 
such a system and become aware of potential malfunctions. It is obvious, that (necessarily) overtrusting users 
are vulnerable to attacks on their systems [26]. It is, therefore, a challenge to create understandable systems. 

With every passing year, sub-symbolic ML and knowledge representation learning on knowledge graphs – 
that is, learning of symbolic representations [27]) – are advancing rapidly, both in scale and depth, but in 
different directions. On the one hand, ML techniques are getting better at performing various tasks 
(classification, generation, etc.) on a variety of datasets with great precision and recall. On the other hand, 
knowledge representation brings the ability to represent entities and relations with high reliability, 
explainability and reusability.  

Symbolic approaches are best suited for manageable and completely defined application scenarios. Within 
such scenarios, they can enable control and automation of (standard) processes. For the design of a symbolic 
system, both the problem and its solution must be well understood. (ML systems, on the contrary, can be 
designed without a prior full understanding of the solution – it is sufficient to understand the problem and the 
database.) Quite often we do not have a choice: if data for training an ML-system are not available, we must 
refer to expert knowledge and either create a symbolic system or create a rule-based data generator which 
creates the input for an ML-system. 

The integration of symbolic and sub-symbolic systems as well as the use of symbolic systems as subsidiary 
systems for ML systems can systematically improve the accuracy of the systems and extend the range 
of ML capabilities. In particular, results inferred from ML models can be given better explainability 
and trustworthiness. 

2.9 SUMMARY 
This section has introduced some of the key concepts underpinning KRR ‒ defining the concept of 
knowledge and the describing the structure of a knowledge system. It has discussed, and given examples of 
knowledge representation, emphasising the importance of domain expertise as the process of knowledge 
engineering seeks to build the underpinning knowledge base. The use of inferencing over that knowledge 
base has been explored and the variety of methods available to do this have been introduced. Finally, it has 
discussed the recent introduction of knowledge graphs, and compared such symbolic methods with those 
represented by ML. 



KNOWLEDGE REPRESENTATION AND REASONING – CORE CONCEPTS 

2 - 10 STO-TR-IST-ET-111 

Key takeaways from this section include: 

• Knowledge is created and used in experimental situations, and must be recorded (written down) in
order to exist. Knowledge-based systems provide the means to represent and interact with knowledge.

• The process of acquiring, representing, verifying and managing knowledge is a complex task and
has previously constrained the development of such knowledge-based system.

• Not all knowledge can exist in a computer, approximations must be made, meaning any reasoning
over this knowledge must operate on representations of facts, not the facts themselves. The
representation of those facts requires an expressive yet concise approach that is unambiguous and
independent of context. It is not necessary to have only one method of representation.

• Ontologies and ontological engineering are key tools in knowledge representation. They are
generally distinguished between so called lightweight (definition of concepts and relationships
between concepts) and heavyweight (the addition of axioms and constraints) ontologies.

• The term inferencing is generally reserved to the activities of a machine in reaching a conclusion
based on available data, whereas reasoning generally refers to human thinking.

• Any representation requires some approach to uncertainty management.

• Knowledge graphs, building on representation methods offer symbolic approaches for AI and
contrast with ML. Whereas ML generally requires limited understanding of the domain (just of the
data and the problem statement) symbolic methods rely heavily on domain expertise. However, in
some cases if training data is not available (for example when considering rare events) we must refer
to symbolic systems built on human expertise.

Finally, we note that knowledge representation is a prerequisite for reasoning (inferencing), but knowledge 
representation can be done for other purposes such as improved search and discovery of information. 
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Chapter 3 – IMPLEMENTING KNOWLEDGE  
REPRESENTATION AND REASONING 

The following section presents a discussion on several of the engineering implications that must be kept in 
mind when using KRR techniques. This includes choices about the construction of knowledge models 
themselves, as well as ensuring that any tool is fit for purpose. A core consideration here is the need for data 
integration and interoperability between systems, and the ability for systems to be easily extended using 
capabilities developed elsewhere (and perhaps for other purposes). Therefore, the choice of standards and 
overarching architecture are important. Paradigmatic examples for the implementation of Knowledge-Based 
Systems (KBSs) – following different purposes – are given. We conclude this chapter with a discussion of 
common concerns as well as strengths and weaknesses regarding KBSs. 

3.1 ONTOLOGIES FOR INTEGRATION, INTEROPERABILITY, AND 
INFORMATION SHARING 

Knowledge representation, in particular information models and ontologies, can serve as Semantic Reference 
Models (SRMs) for data management and interoperability. Data and information management in the 
C2 domain demands the integration of distributed information from various sources and heterogeneous 
systems, including legacy systems. This information can be stored in various data silos or in data lakes that 
comprise heterogeneous formats and standards. To properly integrate the information, translate one format 
into another and derive actionable information by combining various sources, an SRM is needed by which a 
common semantics for the interpretation of the available data is specified. The concept of such an SRM is, 
thus, part of the NATO Core Data Framework. (So far, however, it is just a concept.) 

The challenge of information integration becomes harder when different partners with their systems come into 
play. Then, a proper interoperable solution is required. Interoperability is the capability to exchange messages 
between at least two partners, to read and interpret these messages in a consistent way – that is, the partners 
must have a mutual understanding of the information they exchange – and, finally, to react on the messages in 
a foreseeable manner. Interoperability involves at least two sides where operational subject matter experts 
perform operational activities that are expected to be consistent, coordinated, and contributing to a common 
goal. These activities mostly rely on information systems – in the military domain: C2 Information Systems 
(C2IS) – that process data, some of which can be exchanged between systems. Thus, an interoperability 
solution implies human operators, information systems including local processing services and exchange 
services and, finally, information to be exchanged (implying that the sharing of information has been 
agreed upon). 

Ontologies and information models are representations of concepts, their attributes and relations. They 
represent chosen subject areas, i.e., domains of discourse. One might technically distinguish ontologies from 
information models: information models mostly follow an object-oriented approach with the Unified 
Modelling Language (UML) as a representation format, while ontologies are rather based on the Web 
Ontology Language (OWL) or some other graph representation format. Here, we regard the terms “ontology” 
and “information model” as synonyms. 

Within the last decades, a plethora of standards and reference models have been created within the military 
domain as well as the intelligence domain, for various subdomains and purposes, from intra-vehicle data 
exchange via coordination of human, robotic forces and simulation systems to headquarter-to-headquarter 
communication. In principle, every NATO STANAG comes with the fragment of an ontology, e.g., a 
taxonomy of ships (APP-20) or fuels (Logistics Handbook). Closest to the common understanding of an 
ontology are, most probably, the C2SIM (C2 Simulation Interoperation) ontology [1], [2], the MIM, and the 
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Defence Intelligence Core Ontology (DICO). The C2SIM ontology is based on prior work on the Coalition 
Battle Management Language C-BML [3]. It serves as a semantic reference for communication with 
simulation systems and has also been applied for information exchange with unmanned systems.  

As a means for standardizing messages and thus enabling interoperability, the US National Information 
Exchange Model (NIEM) is frequently mentioned, too [4]. The NIEM, however, cannot be considered a proper 
ontology. It provides a vocabulary which Communities of Interest refer to in order to define Information 
Exchange Package Documentations (IEPDs). IEPDs are, in essence, message text formats. The NIEM is 
missing the expressive means to define concepts together with their properties and relations. It is, thus, closer 
to a standard of message text formats like NATO APP-11 than to an ontology. 

The MIP Information Model (MIM) 

The MIP (Multilateral Interoperability Programme) Information Model defines common semantics for 
the Command & Control (C2) domain. The main objective of the MIM is to support information 
exchange in joint and combined operations. 

• The core of the MIM is a taxonomy with thousands of militarily relevant concepts.

• Concepts in the MIM have a rich set of properties to describe the characteristics of ‒ and
relationships between ‒ their instances.

• The MIM is platform independent, so it is not tied to a specific exchange technology.

• Communities of Interest (COIs) can adopt the MIM for developing interoperability
specifications in support of their specific processes. The model can be extended, or have subsets
added.

Refer to the MIM entry in the annexes for further detail. 

Rich Event Ontology (REO) 

The Rich Event Ontology (REO) aims to represent lexical event semantic information; thus, it hopes to 
capture both common-sense world knowledge about events and their participants, as well as lexical 
information on how these concepts are realised and tagged in various English annotation schemas. REO: 

• Unifies existing Semantic Role Labelling (SRL) schemas used in Natural Language Processing
(NLP) by providing an independent conceptual backbone through which they can be associated.

• Augments the schemas with event-to-event causal and temporal relations.

• Facilitates reasoning on and across documents, revealing relationships between events that come
together in temporal and causal chains.

• Part of the world model for autonomous agents in search and navigation experiments.

Refer to the REO entry in the annexes for further detail. 
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Dstl Underpinning Data Science (UDS) OPIS Ontology 

OPIS is a Polish word meaning description. The approach to ontology being developed within the UDS 
project at Dstl is based on description of phenomena. This phenomenological approach starts with the 
premise that the world can be viewed in terms of phenomena which we describe in order to come to an 
understanding of the world around us. These phenomena comprise events (things which happen, 
bounded in space and time) and states (temporally bound conditions of things) which may be changed 
by events. The concepts of Structured Observation Management (SOM) and Object Based Production 
(OBP) have influenced this design in that observations (being descriptions of some phenomena) can be 
seen as structured observations whilst the objects involved in phenomena (both physical and conceptual) 
can be seen as objects in an OBP sense.  

In practice, this results in an event-centric model in which information is the product of activities (a form 
of event with some output) which produce descriptions, or observations, of real-world events; these 
activities being carried out by agents, i.e., humans or machines. Furthermore, properties, characteristics 
and relationships are modelled as state (a kind of phenomena) making their temporal nature explicit.  

Provenance of observations is explicit and related work incorporates observations into formal models of 
argumentation as evidence/information nodes, thereby supporting formulation and evaluation of 
hypotheses. Importantly, this observation based approach directly supports uncertainty and 
multivocality as axioms within a knowledge graph using this ontology do not represent ‘truth’ rather 
they represent some proposition of a perceived ‘truth’, accepting that there may be many such 
perspectives; for example, when measuring the length of an object, there is undeniably some true length 
but due to the measuring process, all measuring activities can only ever approximate this within the 
constraints of method or instrument used (i.e,, precision) and nature of the specific measuring event (i.e., 
accuracy, fallibility, etc); similarly, multiple witnesses may claim an object as being of different colours 
or a car having different license plate number, etc.  

The model is modular based on a tree analogy with a core providing a ‘trunk’ comprising specification 
of essential concepts such as Place, Actor, Physical and Conceptual Thing common to all applications. 
This is extended to the ‘branches’ through domain specific extensions, for example to cover maritime 
situational awareness and pharmaceutical production facilities (the two use cases conducted to date). 
Finally, detail is added at the ‘leaves’ through reference data used to enrich descriptions by means of 
standardised vocabularies such as those produced by UK MOD, US DOD and NATO.  

This modular approach includes the use of external ontologies where appropriate. The model leverages 
extant standards for space (OGC GeoSPARQL) and time (W3C/OGC OWL-Time) which provide 
relative and absolute positioning for phenomena in some coordinate space, spatial and/or temporal. 
Further external ontologies are used to support provenance (W3C PROV-O) and uncertainty.  

The model is based on the W3C Semantic Web stack with the ontology encoded using RDFS and OWL 
in order to support Description Logic based reasoning across the full extent of the model. SKOS is used 
to provide a lightweight structured vocabulary component for terminologies, allowing for a parallel 
governance regime to be applied to parts of the model likely to change. 

The model makes extensive use of Ontology Design Patterns whereby a simple pattern is defined and 
then reused. For example, the act of making an observation uses a production pattern, as does the 
manufacture of a physical object or the creation of a design or plan. 
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3.2 THE W3C SEMANTIC WEB STACK 

The semantic web is an endeavour of the W3C to standardise the syntax and semantics of structured 
information that can be made available via the WWW, so that a web of (unambiguously interpretable) data is 
created. In addition to unstructured information comprising texts, images, video, etc., such structured 
information shall be accessible, integrate-able and process-able for arbitrary purposes. The Semantic Web 
comes with a set of open standards, called the W3C Semantic Web Stack [6]. 

An open standards approach provides a foundation that enables the use of standards compliant software, tools 
and architectural models, widely supported by industry and academia. The W3C Semantic Stack is a modern 
day foundation for an open standards approach for KRR. It is composed of the following standards: 

Defense Intelligence Core Ontology (DICO) 

DICO is a mid-level ontology, designed and built according to Basic Formal Ontology (BFO) standards 
[5]. The DICO is the Defense Intelligence All-source Analysis Enterprise (DIAAE) knowledge model 
for Object Based Production (OBP). It provides the semantic framework to access and organise defence 
intelligence data in a way that is intuitive and mission focused for the DIAAE analysts and collectors 
preparing for, and participating in, dynamic conflicts. Within the DICO, concepts are modelled using 
real world relationships that are structured in a way that is meaningful to both computers and humans. 

This approach enables standards-based information exchange and interoperability between integrated 
applications and services. The expressivity and flexibility of the DICO knowledge model allows for 
future development, information sharing, and analytics. The DICO will facilitate the: 

• Consistent development of classes and relationships that reflect the content found in 
authoritative Defense Intelligence Analysis Program (DIAP) sources such as the Modernized 
Integrated Database (MIDB); 

• Ability to better incorporate spatio-temporal entities (e.g., the movement of mobile missiles out 
of garrison) with current and future analytic tool suites and databases focused on fixed entities 
such as facilities; 

• Enhanced (i.e., computer-assisted tools such as machine learning) reasoning that supports 
intelligence analysis methods instead of data dictating analysis; 

• Integration of relevant data from disparate intelligence sources and publicly available sources 
into a common object management service; 

• Logical and consistent expansion of reasoning support into any domain at any level of 
granularity (i.e., from large aggregate objects down to elemental parts of objects); and the  

• Improved usage of Intelligence Functional Codes (IFCs) and other Intelligence Community 
coding systems to reason with intelligence and analyse production. 

The primary form of implementation of the DICO will be integration the Object Management Service 
(OMS) of the Defense Intelligence Agency (DIA). Creation and implementation of DICO compliant 
ontologies at the application level will strengthen semantic integration across the Defense Intelligence 
Enterprise and add to an evolving Enterprise Knowledge Graph. 

Refer to the DICO entry in the annexes for further detail. 
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• The eXtensible Mark-up Language (XML) as a mark-up language for defining syntax of information; 

• The Resource Description Framework (RDF) and its schema (RDFS) for coding information triples 
which, in essence, denote relations between entities and, in combination, are to create a global 
knowledge graph; 

• The OWL2 (the current version of OWL) as a description logic based language to define ontologies 
which goes beyond the expressiveness of RDFS. OWL supports inferencing and reasoning 
capabilities and is used by the OWL-Time ontology to describe temporal aspects and the Geospatial 
SPARQL Protocol and RDF Query Language (GeoSPARQL) ontology to describe geospatial aspects. 
The MIM is originally a UML-model but has been provided with a transformation to OWL; 

• The Rule Interchange Format (RIF) and the Semantic Web Rule Language (SWRL) for defining and 
exchanging rules;  

• SPARQL as a query language for RDF-triples; and  

• The PROV ontology (PROV-O) which offers an approach to describe provenance. 

The use of these open standards components allows the application of standards compliant approaches to 
reasoning, particularly the application of description logic using, for example, HermiT [7] or Pellet [8] 
reasoning engines. Military systems development can profit from W3C developments in two respects: firstly, 
it can profit from the structured information that is being made available via the semantic web. Secondly, it 
can technologically build upon the open standards and related technology. 

3.3 CASE STUDIES 

We offer the following examples of different cases where KRR is being used.  

3.3.1 Building Domain Ontologies – DICO Development Process, Design Principles, and 
Best Practices 

The Defense Intelligence Core Ontology (DICO) is a mid-level ontology, designed and built according 
to Basic Formal Ontology (BFO) standards [5]. A primary purpose of the DICO is to support the operators’ – 
in this case intelligence analysts’ – ability to reason with their data. Plain language questions can be fairly 
easily transformed into machine-readable query statements, to be sent to an analytic engine. The authors of the 
DICO captured concepts of common concern to defence all-source intelligence analysts. Further detail can be 
found in Annex C. 

3.3.2 Knowledge Representation and Reasoning in Practice – The WISDOM R&D 
Platform 

WISDOM is a R&D software platform [9] that has been developed at Defence Research and Development 
Canada (DRDC), mainly under Project 05da: Joint Intelligence Collection and Analysis Capability (JICAC), 
and is meant to be a proof-of-concept prototype of an intelligence production support system. It is geared 
towards research in data/information/knowledge integration, fusion, analytics, management and 
exploitation, aiming at providing a capability to support the analysts and decision makers in developing their 
belief, opinion, judgment, or prediction about situations while these individuals are involved in situation 
analysis and decision-making activities. A more detailed discussion of WISDOM can be found in Annex D. 
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3.3.3 Relevance Filtering, Information Aggregation and Enrichment – The Intelligent 
Situational Awareness (INSANE) Framework 

Within the “Intelligent Situational Awareness” [10] framework at Fraunhofer FKIE, we conduct experiments 
in rule-based information management for C2IS. Operators of C2IS have to receive exactly all information 
that is relevant regarding their task and role, at the right time. They must neither be under-informed nor 
overtaxed. Therefore, C2IS has to provide suitable information management tools. These tools have 
information filters that allow for the creation of overlays in a Geographical Information System (GIS) or the 
selection of messages from a news source [11]. They assess the relevance of information with respect to the 
actual situation, on-going processes, the role and the current tasks of the operator.  

One approach to the creation of information filters is rule-based: filtering criteria are manually defined as 
logical rules for assessing information items. The challenge is to make filters sufficiently fine-grained without 
running into the risk of making them overly complex, hard to understand and maintain, and eventually 
inconsistent. A possible solution is modularisation, that is, the definition of several coarse-grained filters and 
their appropriate combination. Alternatives to the rule-based approach can achieve a higher degree of 
automation by applying ML-techniques [12]. However, trained filters must be individually adaptable and, to 
that end, come in a human-understandable and -editable format. ML-approaches and rule-based approaches 
can be integrated by providing a user interface that enables the operator to give feedback and manually 
customise their profile. The challenge is in the proper (most probably: rule-based) orchestration of the 
different filters. 

Filtering is only one part of information management. A system should also consider how information can be 
aggregated and enriched in such a way as to be useful to the operator. Let us assume that we are operators in 
the command post of a battalion. We are responsible for assessing the situation of the red forces (G2/S2). 
Firstly, we are provided with a map of the battle space. Within that map, relevant terrain properties are to be 
detected. To these belong potential borders between units, like rivers, heights, etc. Secondly, strategic 
reconnaissance provides us with an overview on the red forces to be expected on the battlefield. That is, to 
some extent we know which units we will be confronted with, how they will be organised and how they will 
be equipped. Thirdly, we have knowledge of the red doctrines – we know the space a tank platoon takes, and 
so on. Fourthly, we conduct reconnaissance ourselves and, thus, receive information, e.g., on sighting a tank. 

We assume that a tank is always part of a company, either as a member of a platoon or as the tank of the 
company commander. From the sighting of a tank, we conclude that a company must be in that area. We know 
the space a company and its platoons take up and we know terrain properties that restrict the potential spaces. 
We can thus approximately locate the company. Sightings of additional Battle Space Objects (BSOs) enable 
us to further specify our situational overview. We aggregate the information we receive, close information 
gaps and determine the red disposition of forces, including the borders between units and the point of main 
effort. This can be achieved by a rule-based system: constraints imposed by terrain properties and doctrine are 
to be defined as rules. These rules plus facts derived from reconnaissance enable inferences about the actual 
situation. 

Information aggregation and enrichment not only leads to a better situational overview by distilling and 
organising what we know but also by determining knowledge gaps and, therefore, directing further 
reconnaissance: if we have recognised two platoons next to each other, we know that there must be a third 
platoon but we might not know on which flank it is positioned. We must focus our reconnaissance accordingly. 
Also, if we recognise an unexpected vehicle, we should question our initial assumption on the red forces 
organisation and equipment.  

One might be tempted to apply ML-techniques instead of symbolic knowledge representation in order to train 
an information management system. This, however, would require great amounts of realistic training and 
testing data which are most probably not available. Therefore, we have no choice except to create aggregation 
management support on the basis of symbolic knowledge representations. 
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3.3.4 Exchanging Information Within the UK and Five Eyes Defence and Security 
Community – The UKIC Information Exchange Standard (IES) 

The Information Exchange Standard (IES) is a standard developed within the UK Intelligence Community by 
the UKIC Entity Working Group (EWG) for the purpose of exchanging processed/analysed intelligence. This is 
based around a particular kind of ontology, specifically a four-dimensional extensional ontology in which the 
criterion for identity of any particular entity is its spatio-temporal extent. This can be seen in the Figure 3-1, 
showing how states are used to record measurements, in this case the mass of a person over time.  

 

Figure 3-1: Mass of a Person Over Time Using IES Representation. 

This form of ontology in this example explicitly models a person in terms of their spatio-temporal extents, 
with mass being a characteristic of states of the person at different times.  

The use of RDF Schema as the basis for this standard, combined with the mereological basis of its class 
hierarchy, provides a readily extensible yet semantically rich form of representation for the purposes of 
exchange (Figure 3-2).  

3.4 OPPORTUNITIES AND CHALLENGES OF IMPLEMENTING 
KNOWLEDGE-BASED SYSTEMS 

3.4.1 Discussion of Common Concerns 
Let us discuss common concerns and objections against approaches to symbolic AI. 

3.4.1.1 Should I Really Care, Don’t ML Methods Deliver It All? 

Question: KRR/symbolic methods are an established technology with a large body of knowledge behind them, 
and a suite of standards supporting the semantic web. However, the current focus in AI is on computational (ML) 
methods, largely driven by the convergence of data availability, processing power and software frameworks. 
Given the hype it could be interpreted that ML can deliver much of what knowledge-based (symbolic) methods 
could, without needing to go through the effort of defining ontologies. Is that true? 

Reply: ML methods require data. The amount of data required to learn over a state space of d dimensions 
increases exponentially with d, so the data requirement can become unrealistic over a large-enough state space. 
In such cases where adequate data are not available, ML is not an option. A further important reason for 
considering knowledge-based methods is the need to ensure explainability. AI that learns independently and 
finds different patterns with each new set of data cannot be audited against an accepted cognitive 
framework. Therefore, it is dangerous to apply such solutions in domains where the users must adhere to the 
Law of Armed Conflict and consider other ethical constraints. Finally, a problem with ML-approaches is that 
the ML-system will learn independently on each dataset and potentially create one structure from one dataset 
that is incompatible with the next result. As a result, the approach may lead to the development of additional 
silos of knowledge. 

Fred
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Figure 3-2: Example IES Schema. 
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KEY:
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Namespaces:
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 
@prefix ies: <http://ies.data.gov.uk/ies4#> . 
@prefix data: <http://data.gov.uk/testdata#> .
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3.4.1.2 With New Technologies, Doesn’t That Just Lead to New Complexities? 

Question: New approaches and technologies often needed to develop ontologies seem complicated – is it 
possible to achieve robust solutions that people can engage with?  

Reply: Ontologies are based around common language using the subject-predicate-object construct which is 
infinitely less complex than abstract computer coding and allows for input from Subject Matter Experts 
(SMEs) in a simpler and more meaningful way. 

Question: Does this mean I have to move to new data storage solutions and complexity? 

Reply: You do not have to move to new data storage solutions. In fact, your data storage options are expanded. 
Ontologies allow for a data centricity vs. application centricity which means data is not ‘held hostage’ by an 
application but rather can be utilised through different applications 

Question: By constraining my database solution to a graph database, will I incur latency problems for complex 
queries and updating? 

Reply: The best measure seems to be to use a modular approach to deal with complexity. A key skill in 
modelling is knowing when enough is enough and focusing on specific needs (don’t boil the ocean) – use 
decision-support questions to scope to challenge. For smaller databases that do not require frequent updating, 
a graph database is likely the optimal solution. However, for implementations such as C2 of mobile military 
entities, they are less practical. Fortunately, there are several open source and commercially available tools 
and data base enterprises to allow integration of the ontology with federated and mixed database formats. One 
way to deal with potential complexity and query latency is to constrain the knowledge model to an OWL2 
profile such as a Query Language (QL) which allows for efficient linkage of the model with 
relational databases. 

3.4.1.3 Are KR Methods Robust? 

Question: Can KRR respond to new requirements?  

Reply: Use the modular approach, combining a core with related reference and application ontologies. 
The core remains fairly rigid in order to ensure interoperability between users of related reference and 
application ontologies. The more specialised modules are expandable or adjustable as the mission owner 
requires them to be. For governance, establish a responsive governance structure. It should entail both 
coordination and development processes to improve the collection of modules as well as the technology in 
place to conduct automated validation of ontology alignment and logic as modules evolve. 

Question: I hear that ontologies constrain our vernacular because we are forced to use terms in the ontology 
that are not common to our domain. Is that true? 

Reply: Formal ontology languages provide tools to overcome this problem and allow many different terms for 
a similar entity to co-exist in the model. There is some need to adhere to the overall standard, but the benefits 
gained in interoperability should far outweigh the cost. 

3.4.1.4 Are Specialist Skills and Expertise Required? 

Question: What skills, expertise and experience are required in teams to develop and deploy KRR methods? 

Reply: KRR approaches, utilising ontologies and/or other structures to provide symbolic representations 
represent a different approach to traditional schema based methods required by relational databases. This report 
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has outlined the skills and understanding required to effectively use knowledge reasoning and representation 
methods and has given examples where they are in use.  

The discipline of knowledge engineering, well understood to support the implementation of Symbolic AI / 
expert systems, may now require strengthening across NATO nation capabilities. This may require the 
appointment of knowledge engineers in organisations. Future knowledge engineers would assume 
responsibility for defining core and domain specific ontologies, establishing systems that SMEs can maintain, 
providing the conceptual leadership for future knowledge-based systems and helping to navigate the route to 
integrating with existing knowledge systems. Knowledge engineers require knowledge and experience of KRR 
methods and technologies highlighted in this report, but they also require the skills to interact with SMEs with 
unstructured and structured techniques to allow them to dissect and represent a particular domain in the most 
appropriate manner. 

3.4.2 The Strengths and Weaknesses of Knowledge Representation and Reasoning 
Approaches 

The following list acknowledges some of the advantages of symbolic approaches: 

• Given the right tools knowledge representations and rule systems can be coded and maintained by 
knowledge engineers who are operational SMEs themselves or who can naturally form a team with 
an SME. Problems frequently arising from miscommunications between software engineers and 
operational experts can be avoided.  

• While ML-techniques rely on great amounts of data, symbolic approaches do not rely on data at all 
but only on the knowledge of subject matter experts. Especially in the military domain, we often face 
the problem that sufficient data for training ML-models do not exist or are not accessible. This is never 
a problem for a symbolic approach.  

• While the update of an ML-model often requires a complete new training of the model – with 
respectively high costs in time and computational power – the update of a symbolic model is 
rather straightforward. 

• Inferences that are drawn from a knowledge base are, in principle, comprehensible. They are justified 
by the applied rules of (rational) reasoning. Therefore, the output of a symbolic reasoning system can, 
in principle, be explained to the operator.  

• Knowledge representations can be Semantic References Models (SRMs) for information that is to be 
exchanged among partners. They can enable semantic interoperability. 

In addition to the positive points outlined here, some challenges must also be considered: 

• The size of a knowledge representation provides more chances for the introduction of inconsistencies. 
As inconsistencies are necessarily false and from something false literally everything can be 
concluded, they pose a serious problem. Either the consistency of a knowledge base has to be 
guaranteed or an approach to dealing with inconsistencies has to be found (which, however, almost 
certainly will affect inferencing in general).  

• A good way to overcome the challenge is to follow a modular approach and to extend core systems 
and ontologies for well-defined, bounded contexts – those that follow the rules of domain-driven 
design [13]. 

• Reasoning with large knowledge bases is computationally demanding and time consuming. Worst 
case complexity is high. This issue is usually resolved by constraining the complexity of the 
knowledge model. For example, by using an OWL2 QL profile, some properties can be constrained 
or disallowed such that the model can be efficiently linked to relational database and query response 
time can be greatly reduced. 
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• The effort for manually coding and maintaining knowledge bases can be quite high.  

• This challenge is often addressed by integrating AI techniques, such as NLP calibrated with a basic 
ontology to generate recommendations for term expansion. Another measure could be to apply ML 
for the automatic learning of ontologies/knowledge graphs [14]. 

• Facts and rules must be known before they can be coded. Symbolic approaches are not suitable for 
exploration. (In comparison, ML-techniques or other statistically based approaches can be suitable for 
exploration.) 

• The establishment of a knowledge representation as a standard reference for interoperability requires 
collaboration between the relevant stakeholders and, thus, further effort in its specification. 
This challenge is addressed by ensuring the development team contains both knowledge engineers 
and domain SMEs. The development must also be iterative to start small and build the knowledge 
base over time. 

• Automatic reasoning depends on coded facts and rules. In order to infer all potentially relevant 
conclusions from a knowledge base, it must be complete, that is, contain all potentially relevant facts 
and rules. Completeness is hard to guarantee. 

• Data can be vague or even false. A reasoner has to be able to deal both with fuzzy and potentially 
false data if sensor data are to be considered.  

Thus, while symbolic methods offer the chance to encode SME knowledge and offer comprehensible 
inferences, they don’t suit every situation and could incur an overhead in maintaining knowledge bases 
and rulesets. 

3.5 SUMMARY 

In this chapter, we discussed semantic standards and tools for enabling information integration and arriving at 
a common understanding of heterogeneous information. To these standards belong the open standards of the 
W3C Semantic Stack, among others. We described example of ontologies in use or development and provide 
four paradigmatic examples for the application of knowledge representation techniques, namely: 

• The DICO as an ontology for supporting reasoning in defence intelligence; 
• The WISDOM platform for studies in information integration, sense-making as well as specifying 

and exploiting expert and domain knowledge; and 
• An experimental system for information filtering, aggregation and enrichment within the INSANE 

environment. 
• An ontology driven standard for Information Exchange – the UK Intelligence Community (UKIC) 

Information Exchange Standard (IES). 

Finally, we discussed common concerns regarding knowledge technologies and the strength and weaknesses 
of the knowledge representation approach. 

Key takeaways from this section include: 

• Ontologies and information models can serve as semantic reference models for the integration of 
distributed information as well as semantic interoperability solutions. 

• Some information exchange models, like the NIEM, are rather definitions and message formats and 
cannot count as ontologies. Not every model that has been designed to enable information exchange 
can serve as a proper semantic reference model. 
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• The W3C Semantic Web Stack is a set of open standards for defining and exchanging knowledge. 
Military developments can profit from referring to these standards and standards compliant open 
software. 

• Contrary to ML systems, KBS do not demand large amount of training data and are therefore the 
choice, when data is not sufficiently available. 

• Contrary to ML systems, KBS can ensure explainability of their output.  
• Scalability can be an issue for KBS. It is therefore recommendable to follow a modular and 

domain-driven design approach, with manageable solutions for bounded contexts. This facilitates also 
adaptation to new requirements. 

ML-techniques and knowledge representation techniques can be combined, e.g., to automatically 
create knowledge representations (ontology learning) or to ensure explainability of ML systems, 
e.g., Explainable AI (XAI). 
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Chapter 4 – CURRENT RESEARCH THEMES FOR KNOWLEDGE 
REPRESENTATION AND REASONING 

In the section to follow, we examine a selection of active research themes for KRR. While relevant 
to a variety of different computational systems, these themes reflect the points at which KRR overlap with 
AI research, including the development of autonomous agents that can serve as teammates to humans by 
accomplishing different forms of recognition, interpretation, and reasoning over sensory inputs from the 
world around them, including language. We begin with an overview of text and joint text and image/video 
analytics (Section 4.1), turn to interfacing with humans through natural language (Section 4.2), then discuss 
the representation of causality (Section 4.3), followed by explainability and trust in inferencing (Section 4.4). 
We close with a summary and a presentation of the outlook, as well as recommendations for developing 
skills and expertise for tackling these ongoing challenges and dynamic technology landscape.  

4.1 MULTI-MODAL KNOWLEDGE REPRESENTATION – DEALING WITH 
TEXT, IMAGES, AND BEYOND 

Text and image/video data, among other unstructured data sources, share common characteristics that make 
exploiting the data difficult, especially in an army tactical environment where there is likely to be noisy, 
conflicting data. The sheer volume of text and image/video data represents one challenge: given the 
“fire hose” of data streaming in, how do we constrain what undergoes further analysis? A second challenge 
is that text and image/video analytics have advanced as two separate fields, which are only beginning to 
come together to establish shared structures for exploiting text and video jointly. Nonetheless, both fields 
have normally sought to extract relevant features from the input and classify the data accordingly in order to 
impose any kind of “meaning” on unstructured text and video data.  

There are three broad types of classification approaches, which often differ in the amount of knowledge 
injected into the system: supervised, unsupervised, and semi-supervised. Supervised approaches tend to take 
a more knowledge-based approach to classification, often relying on large amounts of manually annotated 
data in combination with a taxonomy or ontology of words and concepts. Unsupervised approaches tend to 
take a more statistical approach to classification, relying on the assumption that “you can know a word by the 
company it keeps,” and similarly for images, that you can know a pixel (or sub-space features) by examining 
distributions and co-occurrence patterns. This section examines the trends in text analytics, including vector 
space representations, which have been adopted in text and image analysis, but also in joint modelling of 
data from a variety of disparate sensors.  

4.1.1 Symbolic Approaches to Text Analytics 
Largely drawing upon research in AI and Linguistics, one approach to these problems uses symbolic, 
structured methods that often rely on the existence of manual annotations. The manual annotations consist of 
tags organising what are thought to be the relevant features of the data, and these may also be organised in a 
taxonomy or ontology of words, concepts, or linguistic meta-categories, such as syntactic categories. At this 
point, technologies have advanced such that many syntactic patterns can be automatically detected for 
high-resource languages at relatively high accuracies. As a result, morpho-syntactic analysers are quite 
dependable for languages like English [1]. Furthermore, based on syntactic notions like subject and object, 
which can be fairly reliably captured (again, for higher-resource languages) in phrase structure and 
dependency parses [2], some semantic correspondences can be exploited in languages where certain 
semantic roles are often associated with certain syntactic slots. For example, in English, the syntactic subject 
is often an actor, while the syntactic object is often an undergoer: DavidACTOR kicked the ballUNDERGOER. 
Exploiting such patterns between syntactic realizations and semantic features is of primary interest to 
automatic Semantic Role Labelling (SRL), described in greater detail in the paragraph to follow [3]. 
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Unfortunately, while nouns and verbs can be identified, many concepts must be inferred, such as causation 
and intention. One way to encode such concepts is within a lexical resource, such as a taxonomy or ontology 
of words/concepts. When associated with certain tags used in an SRL annotation schema, patterns can 
emerge, such as the fact that communication events generally have two co-agents as participants: SusanAGENT 
chatted with RachelCO-AGENT. A variety of linguistic resources have been developed to capture generalizations 
about what types of participants are involved in a given type of event, and each has been used to annotate 
data and train SRL systems: The Proposition Bank [4], ERE [5], VerbNet [6], and FrameNet [7]. The SRL 
can, in turn, be used in more complex applications like information extraction and summarization, and has 
even been shown to improve machine translation [8].  

Although each of these resources was created with a slightly different goal in mind, they are surprisingly 
compatible in that each offers a unique strength, given the varying level of semantic specificity represented in 
each. Thus, ideally these resources could be used together or interchangeably, depending upon what type of 
information was desired, and the annotated data created for each could be combined into a larger, more diverse 
training corpus. See Section 2.3.3 for a description of the Rich Event Ontology, which unifies SRL resources.  

4.1.2 Vector Space Models of Text 
In contrast to knowledge-based approaches, many statistical approaches can be applied in an unsupervised 
fashion, which requires less overhead in the form of creating annotation schemas and performing the 
annotation. The fundamental problem is to learn meaning and usage of words in a data-driven fashion from a 
corpus without prior linguistic knowledge. Statistical approaches to this problem, perhaps not surprisingly, are 
primarily based on word frequencies and distributions in large corpora. Such statistical measures can allow 
insight into meaning, for, as Firth [9] put it, “You shall know a word by the company it keeps”. Firth’s quote 
captures the notion that word meaning is necessarily context-dependent, and that words with similar meanings 
will share similar contexts. This notion has given rise to a variety of influential vector space models of word 
and document meaning. A vector space model is an algebraic model used for representing text (but in theory, it 
can be used to represent any object) as vectors of identifiers [10]. In a vector space model, each dimension 
corresponds to a separate term, and if a term occurs in the document, its value in the vector is non-zero. 
The precise way in which the value, known as a term weight, is computed depends upon the specific model.  

Another influential family of statistical learning models has also been introduced and taken up rapidly in NLP: 
neural networks [11]. Artificial neural network learning is inspired by biological neural networks in the central 
nervous systems of humans and animals. Although there is no single formal definition of an artificial neural 
network, it generally can be thought of as a network of interconnected nodes or “neurons” that can exchange 
“messages” between each other. The connections between nodes have numeric, adaptive weights that can be 
tuned based on experience, much in the way that there are different connections strengths between neurons in 
the nervous system, and frequently activated paths have stronger connections. There is firstly a set of input 
neurons, which may be activated by the words in a document (or the pixels in an image). Depending upon the 
weights or strength of connections between the input nodes and connected nodes, the activation will be passed 
on to other neurons. This process is repeated until an output neuron is activated. Like term weights, the 
weighting of the connections depends upon the specific model examined. A popular neural network model is 
Word2Vec [12]. Word2Vec computes vector representations for words that are learned by neural networks, 
which arguably preserve some linear regularities among words and is less computationally expensive on large 
data sets than Latent Dirichlet Allocation (LDA).  

An important assumption of Word2Vec is that “similar” words tend to be close in the vector space, but of 
course words can have multiple types and degrees of similarity. Somewhat surprisingly, one can use 
“word offset techniques,” where simple algebraic operations are performed on the word vectors to find 
analogical relations. For example, “what is the word that is similar to woman in the same sense as king is to 
man?” To answer the question a:b, c:d where d is unknown, one can find embedding vectors a, b, c and 
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compute d = b – a + c. In other words, King – Man + Woman = Queen. Figure 4-1 depicts this and 
a syntactic relation (singular/plural) in an idealised, two dimensional vector space representation.  

Figure 4-1: Semantic and Syntactic Vector Offset Relations [12]. 

4.1.3 Combined Vector Space and Knowledge-Based Approaches to Text Analytics 
Although promising, vector space representations generally have been criticised for being ad hoc and prone 
to the production of low-quality vectors since training text often contains incomplete, ambiguous information 
or simply not enough data. Essentially, although vector space models are able to capture topical similarities 
between words found in a text, what type of similarity is captured can vary wildly from word to word and 
text to text. Accordingly, the efficacy of using vector offset relations may depend upon what type of relation 
is sought. Vylomova, Rimell et al. [13] explore a range of semantic and syntactic relations and find that, in 
general, morphosyntactic relations are more accurately represented than lexical semantic relations. This has 
led researchers to find approaches that use vector space representations, but also leverage some type of 
knowledge to produce word representations of higher quality. Several notable combined approaches are 
discussed in the paragraphs to follow.  

Xu, Bai et al. [14] explored an early approach of this type, incorporating information from a knowledge 
graph containing information of two types: relational knowledge and categorical knowledge. Relational 
knowledge encodes relationships between entities so as to differentiate word pairs with analogical 
relationships (e.g., is-a, part-of, child-of relations). Categorical knowledge encodes attributes and properties 
of entities, according to which similar words can be grouped into meaningful categories (e.g., gender, 
location). The authors test a system augmented only with categorical knowledge (C-Net model), augmented 
only with relational knowledge (R-Net model), and one augmented with both (RC-Net model) against the 
Skipgram model. The systems are evaluated on the same semantic/syntactic analogies tests from Mikolov, 
Yih et al. [15]. The authors find that while both knowledge-powered models outperform Skipgram, the full 
RC-Net model yields the largest improvements. Interestingly, the authors find that while incorporating 
relational knowledge can give rise to higher accuracy on all types of analogical reasoning tasks, 
incorporating only categorical knowledge can cause increased performance on semantic analogies, but 
decreased performance on syntactic analogies. Intuitively, this makes sense given that syntactic analogies 
represent only one type of relational knowledge, and other semantic relations between syntactic elements 
will only cause confusion when trying to pinpoint syntactic relations.  

In Faruqui, Dodge et al. [16], the authors explore retrofitting existing word vectors to semantic lexicons, 
including the Paraphrase Database (PPDB) [17], WordNet [18] and FrameNet [7]. The authors explore 
refining vector space representations using relational information from each of these semantic lexicons – 
essentially encouraging words linked in the lexicon to have similar vector representations. This idea is 
captured graphically in Figure 4-2.  
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Notably, the authors offer this as a post-processing step; thus, they are agnostic as to what type of vector 
representation is used. The authors test retrofitting a variety of different vector models with each of the 
semantic lexicons, evaluating each model on word similarity, syntactic relation, synonym selection and 
sentiment analysis tasks (note the variety of applications to which vector space representations have been 
applied). The authors find that retrofitting with any of the lexicons (except FrameNet) offers improvements 
on the word similarity/synonym tasks as well as the sentiment analysis task. The poor performance of 
FrameNet is explained by the fact that FrameNet doesn’t group words according to semantic or syntactic 
similarity, and instead according to shared real world domains – a very abstract type of similarity. Similarly, 
the authors find no improvement on the syntactic relation task, given that the type of knowledge encoded by 
the selected lexicons is semantic only. This is consistent with what Xu, Bai et al. [14] noted with respect to 
the poor performance on syntactic relation tasks by the model augmented only with categorical knowledge. 
It is clear that one must carefully select the type of knowledge injected into the system, and weigh this with 
respect to the planned task.  

While the existing models of vector space word representations are based solely on linear contexts, Levy and 
Goldberg [19] explore the use of more structured contexts by making use of dependency parses. Dependency 
parses provide syntactic dependency relations between words in a sentence. For example, an adjective 
depends upon a noun that it is modifying. An example dependency parse is shown in Figure 4-3. Note that in 
this parse, there is prepositional attachment ambiguity: from the perspective of a computer, “with telescope” 
could either be the instrument of discovery (modifying “discover”) or something the star has (modifying 
“star”). The dependency parse clarifies the appropriate interpretation.  

In this research, the authors derived the context for the vector space representation by considering the type of 
dependency relation between the head (thing depended upon) and modifier (dependent). This allows the 
vectors to captures relationships between words that are far apart (such as discover and telescope) and 
therefore out of reach in a linear context model. It also allows for the filtering out of coincidental contexts 
which are within the window, but are not directly related (such as star and telescope). Perhaps most 
importantly, this method provides context information that is typed: indicating, for example that scientists 
are subjects of discover and stars are objects. In a qualitative analysis of target words and their 5 most 
similar words, comparing the dependency-based model and Continuous Bag Of Words (CBOW) models 
with windows of both 2 (CBOW2) and 5 words (CBOW5), one can quickly see the difference between what 
is “similar” to the different models. For example, using the target word Florida, the most similar words using 
the CBOW model are largely cities within Florida or the abbreviation Fla, whereas the dependency-based 
model lists only other U.S. states. The authors also compare their model to CBOW models in a quantitative 

Figure 4-2: Two Dimensional Projections of 100 Dimensional Vector Pairs Holding the 
“Adjective to Adverb” Relation, Before (Left) and After (Right) Retrofitting [16]. 
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fashion, testing each model’s ability to rank “similar” pairs of words (defined as functional similarity) over 
“related” pairs of words (defined as topical similarity), given a set of human-annotated “related” pairs or 
“similar” pairs. The dependency-based model achieves the greatest success in this task, over both the 
CBOW2 and CBOW5 models. Thus, this model represents a promising approach to improving vector space 
representations with syntactic information. 

 

Figure 4-3: A Dependency Parse, Illustrating Syntactic Dependencies between Words [19]. 

4.1.4 Joint Modelling of Text and Imagery 
Computer vision research has also found value in using neural network learning of vector space models, and 
there is naturally a growing body of research attempting to model an image and an accompanying, 
explanatory text (such as a caption or object labels) “jointly.” Presumably, any model that integrates features 
from both text and images is a multi-modal, “joint” model. The extent and the point at which the model truly 
integrates text and image representations vary, as exemplified in the research described below.  

Current research [20] has aimed at providing fuller descriptions of an entire scene by jointly modelling entire 
images and descriptive phrases, as opposed to objects within images and object labels. A notable approach [21] 
uses a truly multi-modal vector space by embedding fragments of images (containing objects) and fragments of 
sentences (dependency tree relations) into a common vector space. This research builds upon previous work 
[22] that also used dependency tree relations in a multi-modal vector space representation of images and 
captions, but is novel in that it uses fragments of sentences and images. The goal of this system is to retrieve 
relevant images given a sentence query, and conversely, relevant sentences given an image query. Potential 
image-sentence pairs are scored based on how confidently certain sentence fragments can be matched to some 
fragment in the image. Like Levy and Goldberg [19], the authors choose to use dependency relations in their 
sentence fragment embeddings. Their image fragment embeddings are based on a neural network model that is 
pre-trained on ImageNet [23]. The system is evaluated on image-sentence retrieval performance using datasets 
of 1,000, 8,000, and 30,000 images respectively, wherein each image is annotated using Amazon Mechanical 
Turk with 5 distinct sentence descriptions. Their model outperforms previous methods applied to the same 
datasets, which the authors take as evidence of the fact that fragment object representations are more 
informative than global scene representations. The authors also conclude that dependency tree relations 
outperform bag of words and bigram representations since dependency relations provide useful structure that 
the neural network takes advantage of. There is certainly room for improvement in this system, given certain 
limitations. First, a single phrase describing a single visual entity can be split across multiple sentence 
fragments (e.g., “black and white dog” has a dependency relation between “black” and “white,” and a distinct 
dependency relation between “white” and “dog,” effectively splitting this modifier across distinct fragments). 
Secondly, this model does not take into account single phrases describing multiple visual entries (e.g., “Three 
children playing”). Finally, the object detection system lacks spatial information; therefore, it may mistakenly 
detect, for example, multiple people inside one person.  

Beyond just text and imagery, joint modelling research has gained traction over the course of the DARPA 
program “Active Interpretation of Disparate Alternatives” (AIDA). The goal of this program is to take 
multiple disparate unstructured data sources, such as text and speech of multiple languages, but also images, 
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video and other sensor data, and convert these sources into a single, common semantic representation from 
which knowledge and hypotheses with confidence measures can be derived. In order to undertake this 
challenge, performers in this program have utilised a multi-modal embedding space, where various data 
sources are modelled in a single embedding space, or in a hypergraph [24]. There is promise for these 
approaches to be combined with symbolic, knowledge-based approaches, like the combined approaches to 
word embeddings described previously. 

4.2 CONSIDERATIONS FOR HUMAN INTERFACING – NATURAL 
LANGUAGE INTERFACES  

One primary purpose of KRR capabilities is to enable agents to both understand and potentially 
communicate about the world around them as another human might. As humans communicate in language, 
there are significant bodies of research in dialogue systems, computational semantic representations of 
natural language, and research supporting the recognition of speech acts, or what someone is attempting to 
do with a particular utterance beyond its basic content. All of these areas of research support natural 
language interfaces with agents. The following provides a brief overview of research in these areas.  

4.2.1 Dialogue Systems  
Task-oriented spoken dialogue systems ‒ the goal of which is broadly to identify a user’s intents and then act 
upon them to satisfy that intent ‒ have been an active area of research since the early 1990s. Broadly, the 
architecture of such systems includes: 

• Automatic Speech Recognition (ASR) to recognise an utterance; 

• A Natural Language Understanding (NLU) component to identify the user’s intent; and  

• A dialogue manager to interact with the user and achieve the intended task [25].  

The meaning representation within such systems has, in the past, been predefined frames for particular 
subtasks (e.g., flight inquiry), with slots to be filled (e.g., destination city) [26]. In such approaches, the 
meaning representation was crafted for a specific application, making generalizability to new domains 
difficult if not impossible. Current approaches still model NLU as a combination of intent and dialogue act 
(e.g., a question or statement) classification and slot tagging (identifying semantic entities of interest in an 
utterance), but many have begun to incorporate Recurrent Neural Networks (RNNs) and some multi-task 
learning for both NLU and dialogue state tracking [27], [28], the latter of which allows the system to take 
advantage of information from the discourse context to achieve improved NLU. Substantial challenges to 
these systems include working in domains with intents that have a large number of possible values for each 
slot and accommodation of out- of-vocabulary slot values (i.e., operating in a domain with a great deal of 
linguistic variability).  

Thus, a primary challenge today and in the past is representing the meaning of an utterance in a form that can 
exploit the constraints of a particular domain but also remain portable across domains and robust despite 
linguistic variability.  

Although human-robot dialogue systems often leverage a similar architecture to that of the spoken dialogue 
systems described above, human-robot dialogue introduces the challenge of physically situated dialogue and 
the necessity for symbol and action grounding, which generally incorporate computer vision. Few systems 
are tackling all of these challenges at this point (but see Ref. [29]).  

 



CURRENT RESEARCH THEMES FOR  
KNOWLEDGE REPRESENTATION AND REASONING 

STO-TR-IST-ET-111 4 - 7 

4.2.2 Semantic Representation of Natural Language  
There is a long-standing tradition of research in semantic representation within NLP, AI, as well as 
theoretical linguistics and philosophy (see Ref. [30] for an overview). In this body of research, there are a 
variety of options that could be used within dialogue systems for NLU. However, for many of these 
representations, there are no existing automatic parsers, limiting their feasibility for larger-scale 
implementation. Two notable exceptions with a body of research on automatic parsing are Combinatory 
Categorical Grammar (CCG) [31] and Abstract Meaning Representation (AMR) [32]. CCG parsers have 
already been incorporated in some current dialogue systems [33]. Although promising, CCG parses closely 
mirror the input language, so systems making use of CCG parses still face the challenge of a great deal of 
linguistic variability that can be associated with a single intent. In contrast, AMR abstracts from surface 
variation; thus, AMR may offer more regular, consistent parses in comparison to CCG. AMR is being 
investigated for use in dialogue systems on-board robots used for search and navigation tasks [34], [35]. 

4.2.3 Speech Acts and Dialogue  
In order to engage in dialogue, an interlocutor must interpret the meaning of a speaker’s utterance on at least 
two levels, as first suggested by Austin [36]:  

1) Its propositional content; and  

2) Its illocutionary force.  

While semantic representations have traditionally sought to represent propositional content, speech act 
theory has sought to delineate and explicate the relationship between an utterance and its effects on the 
mental and interactional states of the conversational participants. Speech acts have been used as part of the 
meaning representation of task-oriented dialogue systems since the 1970s [37], [38], [39]. For a summary of 
some of the earlier work in this area, see Traum [40]. Although the refinement and extension by Austin of 
Searle’s hypothesized speech acts remains a canonical work on this topic [36], [41], there have since been a 
number of widely used speech act taxonomies that differ from or augment this work, including an ISO 
standard [42]. Nevertheless, these taxonomies often have to be fine-tuned to the domain of interest to be 
fully useful.  

There is a growing interest in representing various levels of interpretation in existing meaning representation 
frameworks, and in AMR in particular. Bonial, Donatelli et al. [34] present Dialogue-AMR, which augments 
standard AMR, representing the content of an utterance, with speech acts representing illocutionary force; 
the authors present the fully annotated corpus of human-robot dialogue [43], Dial-AMR, with parallel 
standard AMR and Dialogue-AMR mark-up. Bastianelli, Giuseppe et al. [44] present their Human Robot 
Interaction Corpus (HuRIC) following the format of AMR. This corpus is comprised of paired audio 
interactions and transcriptions. Though all text is annotated in the format of AMR, AMR is significantly 
altered by incorporating detailed spatial relations, frame semantics [45], and morphosyntactic information. 
Shen [46] further presents a small corpus of manually annotated AMRs for spoken language to help the 
parsing task. The study presents findings that while AMR offers a clean framework for the concepts and 
relations used in spoken language, the mapping between AMR and computer-interpretable commands is not 
trivial, especially in the case that very little of training data is provided.  

Such work is paralleled by a more sustained recognition of and interest in the multifunctionality of utterances 
in dialogue across the dialogue literature [47], [48], [49]. O’Gorman, Regan et al. [50] present a 
Multi-Sentence AMR corpus (MS-AMR) designed to capture co-reference, implicit roles, and bridging 
relations. Though not strictly speech acts, the interconnected approach to meaning that this corpus annotates 
is directly relevant for deducing illocutionary force in a dialogue context. Kim, Kane et al. [51] similarly 
describe an annotation schema designed to capture discourse inferences via underlying semantic scope 
relations. Hajicova [52] outlines an argument for modelling information and discourse relations explicitly in 
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meaning representations. Though none of these proposals looks at illocutionary force directly, the 
recognition that meaning representations for dialogue need to be expanded to capture levels of interpretation 
beyond the propositional content is growing in NLP.  

4.3 CAUSALITY AND CAUSAL MODELS 

Causality is an intuitive concept commonly used for understanding and explaining processes and courses of 
events, for predicting future events, for intervening into courses of events and for judging on actions and the 
responsibility of actors. We ask for causes, e.g., when we investigate why a building has collapsed, what 
causes lung cancer or makes it more probable, how we can prevent a disease from spreading, and whether 
someone can be held responsible for an accident. Causal thinking is related to conditional thinking – what 
will happen, if we do this? – and counterfactual thinking – if the cause had not occurred, the effect would not 
have occurred [53]. It is, thus, an important means of hypothetical reasoning.  

Although intuitively clear, the concept of causality is hard to define and more than once it has been 
eliminated from scientific discourse [54]. In statistics, the asymmetric concept of causality has been largely 
given up in favour of the symmetric concept of correlation. The elimination of causality, however, has let to 
problems regarding the interpretation of observational data that has not been generated by a randomised 
controlled experiment. An example is Simpson’s paradox which occurs when an association between a pair 
of variables is consistently converted in each subset of a partitioned population. Structural causal models can 
contribute to explaining such anomalies and resolve the question on whether a decision should be based on 
the statistics of the entire population or its partitions [55].  

A Structural Causal Model (SCM) consists of two sets of variables U and V and a set of equations that 
assigns each member of V a value based on the other variables in the model. We call the variables in V the 
endogenous variables of the model. Their values are determined by the other variables via the equations. 
We call the variables in U the exogenous variables of the model. Their values are not depended on other 
variables. Instead, they are determined by a given probability distribution. Given that the SCM can be 
represented by a Directed Acyclic Graph (DAG), the probability distribution over U determines the values of 
all variables in the model. A variable X is a direct cause of a variable Y if and only if X appears in the 
equation that assigns Y’s value (thus, only variables in V have causes.) [56]. 

A DAG together with a probability distribution can be considered a causal Bayesian net. An SCM as defined 
above is a probabilistic causal model. It is also possible to define SCMs as deterministic models [57]. Causal 
models can be manually coded or, in principle, be learned from data (“causal discovery”) [58]. Causal models 
should be both transparent and testable, that is, they should be empirically falsifiable. The usage of graphical 
models contributes to transparency and compactness of causal models. 

A great influence for the reintroduction of causality into scientific discourse and the application of SCMs for 
reasoning is the work of Pearl [59], among the works of other authors. Pearl combines graphical models with 
his do-calculus and thereby allows for the identification and de-confounding of confounding variables, the 
modelling of interventions, and, finally, the evaluation of conditional and counterfactual statements. The 
reasoning process implemented in Pearl’s framework is depicted in Figure 4-4 which is taken from Ref. [58]. 
Causal assumptions are coded by a graphical model. Based on that model an estimand for a query can be 
computed that “provides a recipe for answering the Query from any hypothetical data”. Given the estimate, 
the query can be answered (along with statistical estimates) by referring to actual data. Finally, fit indices can 
be computed to evaluate the measure the compatibility of the assumption and the data and, thus, evaluate the 
causal model.  
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Figure 4-4: SCM Inference Engine According to Pearl [58]. 

Causal models and the do-calculus have been proven very useful i) for modelling interventions and 
hypothetical reasoning (including counterfactual reasoning) and ii) for merging and integrating different data 
sets and transporting solutions to different contexts, thereby contributing to their external validity. 
We assume that there is a great potential for applying causal models in the military domain, in particular for 
improving robust decision support.  

4.3.1 Causality in Natural Language Processing 
Causation exists as a psychological tool for understanding the world independently of language, but 
language can be used to express causation both explicitly and implicitly. To reason over language and the 
world around them, autonomous systems and agents must be equipped with some causal knowledge. What is 
more, vast amounts of language data available on the web and even in the form of film scripts [60] can be 
used to teach systems common-sense causation, in what has been called causative discovery. This 
information includes causation that is counterfactual, but also more nuanced conditions that must be in place 
for an event to happen, sometimes called the “causal complex” [61]. For example, to bake bread, the 
ingredients must of course be combined and baked, otherwise the baking event would not occur, but one 
must also presumably shop for the ingredients, have a heat source and appropriate baking vessel, etc. This 
brings to light some of the main challenges of causal discovery ‒ what factors should be enumerated as 
relevant, and how do we know what these factors are, given that often times many factors are so ingrained in 
everyday rituals that they are rarely mentioned explicitly. 

To facilitate recognition of various types of causation, several different types of resources have been 
established that draw upon NLP techniques in different ways. First, there are lexical resources that spell out 
the words that encode some kind of causation; these include words like cause and make, but also words 
which “lexicalize” causation, like murder, meaning cause to die [7] [62]. Secondly, there are resources that 
provide manual annotations over text corpora that indicate the causal relationships between contiguous 
sentences [63]. In these cases, the causal relations may be made explicit by discourse connectives, such as 
therefore, or they may be entirely implicit: It was raining. I put on my coat. Other types of manual 
annotations focus on both causal and temporal relations between two events expressed in text [64], or 
between two contiguous sentences in narrative text [65]. All of these manually crafted resources can be used 
as ML training data, such that the causative information can be predicted and understood in previously 
unseen text. However, pinpointing causation remains difficult for even human annotators, and many of these 
projects are plagued by low or moderate agreement between human raters; thus, unsurprisingly, there is also 
room for improvement in system performance.  
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Once trained on the manually curated data, these systems can and have been used to support causal discovery 
in previously unseen text. However, as these systems are finding causation in text, there is a bias towards 
learning about the events that are mentioned in text, and not the everyday, common-sense causation that is 
implicit. This is the inevitable reporting bias in language, as people tend to discuss and write about the 
atypical over the expected [66]. For example, if we want a system to learn what objects are heavy and light 
from looking at text corpora, it may come to the conclusion that trucks are light because “light trucks” are 
mentioned frequently, whereas the default assumption is that a truck is heavy. The recently developed 
ATOMIC resource attempts to overcome this bias by crowd-sourcing common-sense causation around an 
initial set of 24,000 common events extracted from text [67]. For example, participants are queried about 
what would cause Person X to hug Person Y, and what effect the hugging event would have on both Person 
X and Y. With the resulting knowledge graph of over 300,000 nodes, it has been shown that neural models 
can acquire simple common-sense capabilities and reason about previously unseen events.  

4.4 EXPLAINABILITY AND TRUST IN INFERENCING 

Information systems can be called “knowledge systems” as they are designed to support the user in 
acquiring knowledge. They do so by providing true statements and a justification for believing these 
statements. In the simplest case, a knowledge system is accepted as an authority, so that the fact that it 
provides a certain information is enough evidence to believe it: “I know that p because the system said so” 
just like “I know that it is two o’clock because that’s what my watch says.” However, if the system is not 
sufficiently reliable to count as an authority, then it has to provide further evidence to support its 
statements, e.g.: “p is the case, because q is the case and whenever q then p.” Further information can also 
be required by the user to properly interpret the system’s output. For example: for turning the diagnosis of 
a medical information system into action – e.g., for choosing the right medication – further information on 
the reasons for the diagnosis might be needed. In the case of autonomous agents acting as proxies for 
humans in dangerous situations, explainability and trust are essential for successful collaboration.  

One approach is to make an information system transparent (glass box technology) and give the user an 
insight into the actual generation of a statement, e.g., by presenting a complete deduction. With a complex 
system, however, this might not contribute to making the output clearer for a human user – it can easily be 
too hard to understand. Another approach is, therefore, to set up a dedicated component for generating 
understandable explanations. This component can aim at formally proving a statement, it can find 
supporting facts via abductive reasoning [68], or it can refer to causal models for determining potential 
causes of a stated fact (see Section 4.3), among other methods. Apart from providing evidence, an 
explanation component can detect knowledge gaps, that is, open questions which ought to be answered in 
order to evaluate a given statement: “The system said p. A good reason for p would be q. Check whether q 
is the case.” An explanation component can be a system on its own, which provides evidence for the 
output of arbitrary systems. A rule-base explanation component, e.g., could serve to justify the output of a 
Deep Neural Network (DNN). The justifications of the DNN output would not make the DNN transparent 
and it would have nothing to do with the actual generation of this output. Still, it could help the user to 
estimate its plausibility. 

Metaphorically, information systems can also be named “knowledge systems” insofar as they “know” the 
information they have. To this end, they must have true information and there must be some form of quality 
management to assure that the information they possess is not true by accident but can be relied on. 
(The quality management provides the system-internal justification of its information state.) It is a challenge 
to elaborate how a “knowing” system in that sense can deal with uncertainty. A “knowing system” would be 
trustworthy by definition, because it would be an authority regarding its information.  

We must accept that mistakes can occur. If we use the system wrongly then we may get the wrong answer. 
In order to recognise a false result we should be able to roughly estimate its plausibility and be able to 
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recognise what cannot be true. We may also seek to repeat the use of the system to see if the results are 
identical. We may also seek to use a different (independent) system to confirm our result, using ensembles of 
various systems to compare or aggregate their outputs [69]. 

4.5 SUMMARY, OUTLOOK AND OPEN CHALLENGES 

In the current themes of research discussed in this section, it becomes clear that to collaborate effectively with 
humans, autonomous systems must use KRR in order to usefully interpret incoming streams of sensory data. 
Much of this research overlaps with NLP research areas, as language is a human’s tool for categorising and 
labelling the world around them into discrete and understandable concepts. As Saussure [70] put it:  

Psychologically our thought – apart from its expression in words – is only a shapeless and indistinct 
mass. Philosophers and linguists have always agreed in recognizing that without the help of signs 
we would be unable to make a clear-cut, consistent distinction between two ideas. Without 
language, thought is a vague, uncharted nebula. There are no pre-existing ideas, and nothing is 
distinct before the appearance of language. 

Similarly, one can begin to see how the shapeless and indistinct mass of input that a computational system 
receives can be organised into increasingly sophisticated categories. This also points to the advantages of 
recent research combining neural network approaches that draw upon lower-level features (such as pixels 
and words) with symbolic approaches that are able to introduce a higher conceptual layer – abstracting over 
categories of objects and events in the way that the human mind does through experience of the world to 
draw conclusions, understand causation and entailments, and explain this reasoning. The ongoing research 
themes discussed here represent important steps towards a system that can process multi-modal streams of 
data and make human-like inferences from that information, contributing greatly to quickly and efficiently 
gaining situational awareness in a tactical environment and supporting effective decision-making.  

For knowledge graphs at scale in particular, a variety of open challenges have been identified in the 
literature. Groth, Harmelen et al. [71] describe specific ‘grand challenges’ ranging from those being tackled 
today to broader challenges focusing on the role of knowledge graphs in future society. Amongst the 14 
challenges identified are the needs for having different forms of knowledge representation that allows 
ambiguous, incomplete and erroneous knowledge to be captured; having methods which can be combined to 
make use of the best of symbolic and sub-symbolic approaches; and the need to be able to work across 
multiple knowledge graphs – accepting that different formats and semantics will always exist. 

There is also the challenge of refining knowledge graph content once a graph has been created. Paulheim 
[72] summarises the approaches available to do this and concludes there remain challenges, in particular that 
current methods are often specific to one type of knowledge graph. A related challenge is being able to 
understand the completeness of knowledge graphs – a non-trivial task as it requires knowledge of a 
hypothetical knowledge graph that contains all the elements the knowledge graph should represent [73], [74]. 

Finally, the fields drawing upon KRR are varied and draw upon different types of backgrounds and 
expertise, from engineering to cognitive science. Thus, an additional challenge comes in the form of 
developing the expertise needed for implementation of KRR techniques, described in more detail in the 
section to follow. 
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Chapter 5 – CONCLUSIONS AND RECOMMENDATIONS 
FOR FUTURE TECHNICAL PROPOSALS 

As we make substantial progress at sharing and integrating data across the alliance, we are being confronted 
with the very real risk of data paralysis. Whether we have truly reached the point of drowning in our own 
data, we must be prepared for that eventuality. As stated earlier, the attention of human analysts is still likely 
to be overstretched by the need to connect subtle but significant observations across multiple domains and 
KRR is an important part of the solution to address this issue in a timely manner. 

Our introduction to this report focused on the increasing challenge, for NATO capabilities and national 
forces, of making sense of an increasingly complex range of data sources, alongside the increasing 
complexity of the operational challenge. In order to achieve a state of ‘Information Advantage’, in particular 
in achieving high level fusion in support of military decision making we observe that KRR methods could 
play a central role – the foundation assumption for establishing IST-ET-111. 

In the course of IST-ET-111 we have reviewed the current state of the art in KRR and sought to understand 
the opportunities and challenges of KRR. We have reviewed what KRR is, considered the implementation of 
KRR and reviewed some of key research themes. In this section we draw this together with some 
conclusions and offer recommendations for future Technical Activities under the umbrella of the 
NATO STO. 

5.1 CONCLUSIONS – THE OPPORTUNITIES OF KRR METHODS 

So, can KRR help us addresses the challenges of attention in an information rich world and deal with the 
complexity posed by the current Defence challenge?  

We propose that KRR offers working solutions to some of today’s challenges, underpinned by more 
than 40 years of research. However, we note that this research has not been fully exploited in military 
capabilities, with specific challenges in the process of the ‘knowledge engineering’ required to capture and 
record domain knowledge in a suitable form. 

Nevertheless, in recent years there are examples of mature systems for knowledge representation (such as the 
MIP) and for new initiatives (for example DICO) building on the standards which underpin the aspirations 
for the semantic web, and on fundamental frameworks such as BFO. As such initiatives gain traction there 
will be an opportunity to make increasing use of sophisticated information and knowledge techniques, 
including the inferencing of new knowledge to support operational decision making. It is also likely that 
the increasing interest and take-up of knowledge graphs by key technology players (Google, Facebook, 
eBay, Microsoft etc) will provide future opportunities and motivate further interest in such approaches. 

A key opportunity, identified by IST-ET-111, is the ability for the current wave of ML systems to be 
complemented by KRR methods in order to improve the explainability of results and, therefore, developing 
trust in future AI systems, while also allowing AI systems to cope with situations with minimal training data. 
However, to date, we recognise work to combine the symbolic (knowledge-based) methods and 
sub-symbolic (computational approaches based on training data) is in an early stage. And making the case 
for such future development has to be done against defence’s enthusiasm for the ‘low hanging fruit’ 
currently offered by sub-symbolic methods, driven by data availability, computational power, access to 
tooling/computational frameworks and success in other domains. We believe, however, there is an 
opportunity to drive early work to develop the tools, skills and relationships required for NATO 
nations to exploit knowledge-based (symbolic) systems alongside the computational capabilities 
offered by the current crop of ML (sub-symbolic) systems. 
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As an underpinning theme KRR has a place in almost any technical activity related to Data, AI or 
Autonomy. In considering the way ahead, we note there are many related activities under the umbrella of the 
NATO STO. This is a complex picture. In particular we highlight alignment with the following groups, 
while offering a longer list of related activates in Annex A: 

• IST-165 – High Level Fusion of Hard and Soft Information for Intelligence.

• IST-ET-112 – ML Ecosystem.

• IST-157 – Human in the Loop Considerations for AI.

• IST-173 – Mission-Oriented Research for AI and Big Data for Military Decision Making.

To avoid duplication of effort we propose any future activity be closely coordinated with appropriate 
technical activities. 

5.2 CONCLUSIONS – THE NEED FOR UNDERPINNING SKILLS AND 
EXPERTISE 

We have recognised that implementing knowledge representation methods can be complex, and that to 
mitigate the temptation to “model the world” any knowledge engineering activity must retain a clear sense of 
purpose and adopt modular approaches, for example by defining higher level ontologies to model general 
concepts, while lower level ontologies are used to model domain specific concepts. We have described how 
the W3C Semantic Web stack offers an accessible approach that allows knowledge representation activities 
to build on common standards, supporting such modular approaches. These standards, and the expertise in 
specifying systems against them and developing capabilities with them, will become important skillsets 
for the future NATO workforce if we are to achieve goals for high level fusion. 

Indeed, there are wider needs around skills and expertise if NATO is to exploit effective KRR. 
The ’knowledge engineering’ skill set is critical and may now support the need to recognise formally a 
‘knowledge engineer’ role. Knowledge engineers require knowledge and experience of KRR methods and 
the other technologies highlighted in this report, but they also require the skills to interact with subject matter 
experts with unstructured and structured techniques to allow them to dissect and represent a particular 
domain in the most appropriate manner. Such skills do not ‘grow on trees’ and might be best developed 
collaboratively across any nascent capability in nations, a good first step being to widen awareness and 
undertake a stocktake of the technical capability already available. 

We have also described how new conceptual approaches to KRR might offer opportunities to develop 
different analytical approaches, for example adopting techniques such as 4D ontologies that focus on the 
states of entities and support more expressive description and analysis.  

5.3 CONCLUSIONS – CURRENT RESEARCH THEMES 

The work of IST-ET-111 has not focused on any one domain, although many of the examples offered are 
focused on command and control and intelligence analysis use cases. However, we have also identified 
opportunities to use KRR techniques to support human-machine interaction techniques which will be 
increasingly important as Defence seeks to implement human-machine teams and sophisticated autonomous 
systems. Indeed, while KRR methods in support of analysis and high level fusion goals can 
undoubtedly offer future capability improvements, it is to the future realisation of effective 
human-machine teams that KRR may be able to offer significant opportunities. This also includes how 
improved explainability could improve trust in machine analysis and future autonomous decision making. 
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There are also a number of areas where ongoing research could develop further that which can already be 
achieved. While natural language processing has made significant steps in recent years there are 
opportunities for defence capabilities to use this work to exploit large quantities of free text material in 
knowledge bases/graphs, and for the knowledge base/graph itself to be used to improve that analysis. 

Other research is focusing on understanding how true causal relationships can be established between elements 
of a knowledge base/graph. Recognising that the current approach in sub-symbolic methods is focused on 
identifying correlation in data exploiting developing thinking in causal modelling could improve robust 
decision support and further draw together links between symbolic and sub-symbolic methods. 

5.4 RECOMMENDATIONS 

Against these conclusions we offer the following outline Technical Activity Proposals for future work under 
the NATO STO.  

We concluded that KRR (symbolic) methods are mature, but have previously been limited by the needs of 
knowledge engineering for a particular domain. However, as the current rise of ML (sub-symbolic) methods 
illustrate their high demand for data, difficulty in identifying rare events and the user’s desire for increased 
trust in their results we believe there is a significant opportunity to explore the complementary aspects of the 
two approaches.  

 

Recommendation 1: The NATO STO sponsors a technical activity to demonstrate the complementary 
use of symbolic and sub-symbolic methods and their benefit to improved decision making. 
 

Such an activity could help to focus expertise and capability across the alliance. The work should consider 
the design of hybrid approaches to sense-making, the exploitation of large volume of free text (as knowledge 
stores), how the completeness of knowledge graphs can be estimated, and how such hybrid systems support 
improved explainability. 

We note that any activity relating to Recommendation 1 should be aligned or joined with suitable existing 
activities to avoid stovepipes and to ensure the optimum approach to any burden sharing. For example, in the 
course of IST-ET-111 we have not considered the availability of datasets to drive experimentation, 
development and benchmark commercial capabilities, but this requires further consideration if we wish to 
drive future work to explore the complementary nature of symbolic and sub-symbolic methods for defence 
applications. Such dataset generation is non-trivial and should be considered in any work arising from 
Recommendation 1. 

Furthermore, we noted that wider adoption of such hybrid systems will require the development of new skills 
and expertise in knowledge engineering, and the adoption of key standards (which are largely already in 
existence). IST-ET-111 represents a nascent group of expertise from which further capability development 
could be achieved.  

 

Recommendation 2: The NATO STO sponsors a suitable technical activity to support a virtual lecture 
series/workshop to increase the awareness of KRR technologies in the science and operational sectors of 
NATO, in order to provide a catalysis for further skills development in this area. 
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Finally, a significant opportunity exists for the use of KRR methods to support future human-machine teams, 
and key research themes, such as the use of knowledge to constraint text analytics and the definition of 
causal models will develop this further. Recognising the relative maturity of text analytics (and that it 
represents a tangible use case for work under Recommendation 1) IST-ET-111 recommends on-going 
exploratory activity. 

 

Recommendation 3: The NATO STO sponsors a dedicated Exploratory Team to consider specific 
interests in causal modelling and its application to knowledge-based systems, as a possible precursor to 
future practical demonstrations under activities such as that against Recommendation 1. 

 

As an area of development, the team consider causality and causal modelling represents a significant 
opportunity to improve decision making, although we recognise that further developments are required. 
Further work exploring this area, including developing relationships with the academic sector, would allow 
future work to rapidly exploit opportunities as they become available. 
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Annex A – RELATED NATO STO ACTIVITIES 

The following activities have links to the themes of IST-ET-111: 

• AVT-ET-204 Data Fusion and Assimilation for Scientific Sensing and Computing. 

• HFM-178 Meaningful Human Control (MHC) Over AI-Based Systems. 

• HFM-322  Meaningful Human Control of AI-based Systems: Key Characteristics, 
 Influencing Factors and Design Considerations. 

• IST-157 Human in the Loop Considerations for Artificial Intelligence. 

• IST-165 (AI2S) High-Level Fusion of Hard and Soft Information for Intelligence. 

• IST-169 Robustness and Accountability in Machine Learning Systems. 

• IST-173 (AI2S) Mission-Oriented Research for AI and Big Data for Military Decision Making. 

• IST-177 Social Media Exploitation for Operations in the Information Environment. 

• IST-178 Big Data Challenges: Situation Awareness and Decision Support. 

• IST-ET-112 ML Ecosystem. 

• SAS-157 Automation in the Intelligence Cycle. 

• SCI-331 Fostering and Managing the STO Autonomy Portfolio. 

• SET-263 Swarms Systems for Intelligence Surveillance and Reconnaissance. 

• SET-278 Machine Learning for Wide Area Surveillance. 

• SET-279 Space-Based Radar Systems, Big Data and Artificial Intelligence. 

• SET-283 Advanced Machine Learning ATR Using SAR/ISAR Data. 
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Annex B – MIP INFORMATION MODEL  
AND RICH EVENT ONTOLOGY 

B.1.1 MIP INFORMATION MODEL (MIM) 

The MIP Information Model (MIM) defines common semantics for the Command & Control (C2) domain. 
It adopts and consolidates concepts from various authoritative sources, mostly NATO standards. The main 
objective of the MIM is to support information exchange in joint and combined operations. Custodian of the 
MIM is the Multilateral Interoperability Programme (MIP), a military standardisation body comprising 
24 member nations, NATO, and EDA (European Defence Agency). 

The core of the MIM is a taxonomy with thousands of militarily relevant concepts. This includes basic 
battlespace concepts – objects and actions – as well as staff concepts such as plans, overlays, and 
organisation structures. The set of supported objects includes persons and organisations, equipment 
and consumables, facilities, as well a control features (e.g., organisation boundaries) and 
meteorological/geographical conditions. The concepts in the MIM have a rich set of properties to describe 
the inherent characteristics, the status and the capabilities of their instances as well as their relationships with 
each other. In addition, metadata can specify, e.g., the originator, the confidentiality, the validity period, and 
the appraisal of exchanged information. All elements are provided with an operational definition to support a 
common understanding. In total, the MIM, version 5.1 comprises >900 classes/data types, >1200 attributes, 
>170 associations, <500 enumerations and <6900 literals. The number of concepts (classes + MIM-specific 
category codes) is <3200. 

The MIM is specified in the Unified Modelling Language (UML). It is platform-independent, i.e., it is 
not tied to a specific exchange technology. By means of UML stereotypes, the elements of the MIM 
are semantically “annotated”. For instance, the meaning and intended use of attributes is further specified 
by stereotypes such as “name” and “measure”, which introduce additional information, e.g., the unit 
of measure. 

Communities of Interest (COIs) can adopt the MIM for developing interoperability specifications in support 
of their specific processes. The MIM comes with a tool suite that allows to subset/extend the model and to 
define structured messages, which are structurally compliant with the MIM. Model transformations allow the 
generation of representations in XML Schema and OWL. 

All MIM-related products can be found at https://www.mimworld.org. The website hosts introductory 
documentation, the information model in Sparx Enterprise Architect format, services to browse the model 
online, and the tool suite. For general information on the Multilateral Interoperability Programme (MIP), 
please see https://www.mip-interop.org. 

B.2.1 RICH EVENT ONTOLOGY (REO) ‒ ONTOLOGICAL HUB FOR EVENT 
REPRESENTATIONS 

There are a variety of valuable ontological resources that focus on representing world knowledge, in the 
philosophical tradition of ontology, and may or may not include lexical resources mapping to those 
concepts. For example, both the Basic Formal Ontology (BFO) described by Smith et al. [1] and the 
Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) described by Masolo et al. [2] and 
Aldo et al. [3] focusses on modelling the concepts underlying natural language and common sense, as 
opposed to the language itself. In contrast, WordNet [4], UBY [5] and the Ontologies for Linguistic 
Annotation (OLiA; [6]) focus on representing lexical and morpho-syntactic information in an ontology.  

https://www.mimworld.org/
https://www.mip-interop.org/
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The Rich Event Ontology (REO) aims to represent lexical event semantic information; thus, it hopes to 
capture both common-sense world knowledge about events and their participants, as well as lexical 
information on how these concepts are realised and tagged in various English annotation schemas [7], [8]. 

REO unifies existing Semantic Role Labelling (SRL) schemas used in Natural Language Processing 
(NLP) by providing an independent conceptual backbone through which they can be associated, and it 
augments the schemas with event-to-event causal and temporal relations. Specifically, REO brings 
together the SRL labelling schemas of FrameNet [9], the Rich Entities Relations and Events (ERE) project 
[10] (originally based on Automatic Content Extraction (ACE) [11], and VerbNet [12]. FrameNet, ERE,
and VerbNet have wide-coverage lexicons of events, and they contribute annotated corpora and additional
semantic and syntactic information that can be crucial to identifying events and their participants.
REO serves as a shared hub for the disparate annotation schemas and therefore enables the combination of
SRL training data into a larger, more diverse corpus, as well as expanding the set of lexical items
associated with each event type. By adding temporal and causal relational information, the ontology
also facilitates reasoning on and across documents, revealing relationships between events that come
together in temporal and causal chains to build more complex scenarios. Most recently, REO has
been enriched with Generative Lexion “qualia relations” [13] which specify how an entity is used, how
it was created, its component parts, and its formal type [14]. REO remains under development and is
being leveraged in experimentation as part of the world model for autonomous agents in search and
navigation tasks [15].
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Annex C – DEFENSE INTELLIGENCE CORE ONTOLOGY (DICO) 

The DICO is the Defense All-source Analytic Enterprise (DIAAE) knowledge model for Object-Based 
Production (OBP). It provides the semantic framework to access and organise defence intelligence data in a 
way that is intuitive and mission focused for the DIAAE analysts and collectors preparing for, and 
participating in, dynamic conflicts. DICO is a mid-level ontology, designed and built according to Basic 
Formal Ontology (BFO) standards. Within the DICO, concepts are modelled using real world relationships 
that are structured in a way that is meaningful to both computers and humans. 

This approach enables standards-based information exchange and interoperability between integrated 
applications and services. The expressivity and flexibility of the DICO knowledge model allows for future 
development, information sharing, and analytics. The DICO will facilitate the: 

• Consistent development of classes and relationships that reflect the content found in authoritative 
Defense Intelligence Analytic Program (DIAP) sources such as the Modernized Integrated Database 
(MIDB);  

• Ability to better incorporate spatio-temporal entities (e.g., the movement of mobile missiles out 
of garrison) with current and future analytic tool suites and data bases focused on fixed entities such 
as facilities; 

• Enhanced (i.e., computer-assisted tools such as ML) reasoning that supports intelligence analysis 
methods instead of data dictating analysis; 

• Integration of relevant data from disparate intelligence sources and publicly available sources into 
a common object management service; 

• Logical and consistent expansion of reasoning support into any domain at any level of granularity 
(i.e., from large aggregate objects down to elemental parts of objects); and the  

• Improved usage of Intelligence Functional Codes (IFCs) and other Intelligence Community coding 
systems to reason with intelligence and analyse production. 

The primary form of implementation of the DICO will be integration with the Object Management Service 
(OMS) of the Defense Intelligence Agency (DIA). Creation and implementation of DICO compliant 
ontologies at the application level will strengthen semantic integration across the Defense Intelligence 
Enterprise and add to an evolving Enterprise Knowledge Graph. Note that the following discussion of the 
DICO makes use of material from several previously-authored sources [1], [2], [3], [4]. 

As discovered by Rohr and Miller in their report from 2016, too often, well-intended attempts are made at 
addressing data interoperability by developing standards for local to cross-organisational use, but the results 
have fallen short of meeting DIAAE-wide data interoperability and semantic understanding. Even when data 
standards are developed, they are often not used or are overcome by changes in technology or missions. 
Reasons for this lack of adoption include a lack of full awareness of data standards, data standards that are 
not enforced, data standards that are developed with insufficient analytic unit engagement, and an 
insufficient understanding of the value that data standards provide. Importantly, when the data standards are 
not developed with internally coherent logic, coupled with user engagement, the result will be a standard that 
is simply unusable. The structure of the DICO, however, will improve interoperability and semantic 
understanding of intelligence data used by the DIAAE. This logical, user semantics-based structure, coupled 
with data standards aligned to the DICO, will greatly improve potential for adoption of both the DICO and 
related data standards.  
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The DICO is modelled using Resource Description Framework (RDF) and Web Ontology Language (OWL) 
[5] to provide the knowledge representation language and formalism necessary to represent consistent 
definitions of and relations among concepts. These languages are W3C standards and adherence to these 
standards improves interoperability.  

As mentioned above, the DICO has been developed according to BFO standards (specifically, 
ISO/IEC 21838-2). BFO is a small, domain neutral, upper-level ontology that will provide a common 
semantic framework able to integrate disparate concepts. DICO also integrates with and extends from 
Common Core Ontologies (CCO) where possible. CCO, constructed primarily by CUBRC for several 
Departments of Defence (DoD) research organisations, comprise eleven mid-level ontologies that extend 
directly from BFO. CCO’s purpose is to represent and integrate taxonomies of generic classes and relations 
across several domains of interest such as material objects, time, measurements, and space. 

The DICO is developed with the primary purpose of improving our understanding of and analysis within 
defence intelligence domains such as infrastructure, order of battle, and targeting. Therefore, the DICO 
extends from CCO terms where practical and adds additional terms where necessary to better model these 
particular domains and their interdependencies as depicted in Figure C-1. 

 

Figure C-1: DICO, BFO, and CCO. 

The first versions of DICO will be necessarily less expressive than is possible following BFO and CCO 
modelling practices. DICO is governed by the taxonomical structure and logical reasoning inherited from 
BFO-CCO. However, this will not negatively constrain innovation and creativity at the application level of 
ontology development. Newly added content that is compliant with the BFO-CCO-DICO integrating 
framework will add to the overall Defense Intelligence Enterprise Knowledge Graph ‒ an evolving, logic 
governed, computable graph. 

C.1.1 DICO DEVELOPMENT PROCESS, DESIGN PRINCIPLES, AND BEST 
PRACTICES  

Since domain ontologies are designed primarily to support the operators’ ‒ in this case intelligence analysts’ 
‒ ability to reason with their data, it is best to start with sample competency questions that would help 
illustrate the types of knowledge one would want to extract from information via the ontology. In the field of 
defence intelligence, collection and analysis is often driven by Essential Elements of Information and 
Priority Intelligence Requirements (PIR). An example PIR could be: “What is Country X’s military 
capability to conduct asymmetric operations against Country Y?” 
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While it may be possible to translate this question (and others) directly into queries against a database, they 
most often require decomposition into more specific questions. For example: “Show me all activity within 
a given area for the last 38 months”. 

Questions can then be transformed further into the form of “pseudo-code” to demonstrate the short bridge 
between a plain language question and a statement that is written in a logical format that can be understood by 
the query system, e.g.: “Which AREA OF OPERATIONS ‘is site of’ some MILITARY EXERCISE?” ‒ an 
activity-based intelligence question. In fact, with a bit of Natural Language Processing (NLP), a plain language 
question can be fairly easily transformed into a machine-readable query statement. The resultant query can be 
placed directly to an analytic engine behind the user interface of the analyst’s intelligence application.  

Most importantly, the sample questions based in First Order Logic (things that are happening in the world as 
opposed to descriptions of those things) can help ontology development in two ways. First, they help us bound 
the domain of interest. In other words, if the concept is not somehow related to the competency questions, 
it reduces the need to cover the concept with entities in the ontology of interest. Second, if the current ontology 
does not identify the entities of interest in the competency questions, they provide a guide for how to include 
them. In short, the competency questions help to establish what’s “in and what’s out” of the ontology. 

In the case of the DICO, for example, the authors gathered competency questions from across the defence 
intelligence all-source analytic enterprise to ensure all concepts of common concern to defence all-source 
intelligence analysts are captured in the DICO, or at a minimum, there is a “hook” provided for development 
of a more detailed module to address the analyst’s needs.1  

C.1.1.1 Uniquely Identifying Entities 
Each entity and property in the DICO, and any modules created according to the DICO, has a unique 
Uniform Resource Identifier (URI) for unambiguous identification.2 The URI is constructed from a base URI 
‒ a namespace that is unique to each ontology ‒ and a local identifier. For example, the base URI of a tank 
within the DICO may be www.dia.mil/dico/tank/. The local identifier of some specific tank on the battlefield 
(i.e., an instance of a tank) may be: www.dia.mil/dico/tank/USCENTCOM_TNK_000001.  

C.1.1.2 Ontology Entities and DICO Entity Categories  
The DICO (and indeed all fully constructed ontologies using OWL) is comprised of six forms of entities; 
class terms, object properties, data properties, data types, annotations, and individuals (also called instances). 
Classes (also referred to as “Types” or “Universals”) serve as the placeholder term for the collection 
of individual instances in the world. For example, the class ‘Military Organization’ ---has individual--- > 
‘1st Tank Brigade’. At its highest level, BFO divides the class terms into continuants and occurrents. 
To facilitate understanding of the DICO we group the class (or objects) terms into the following five 
primary categories:3  

• Material Entities. The things that exist in the world, e.g., FACILITY, VEHICLE, PERSON. 

• Dependent Entities. Formalisation of the many different ways we describe the things around us and 
that we do for example, the speed and function of a tank.4  

 
1 As of June 2020, the socialising with domain SMEs was on-going. Version 2 was published with draft terms to facilitate 

forward progress while meetings with SMEs continued. 
2 http://www.w3.org/Addressing/URL/uri-spec.html. 
3 Class terms are the primary elements that make up a well-formed taxonomical hierarchy consisting of parent and child  

classes – e.g., ‘Weapon’ is the parent class of ‘Rail Gun’. When created using a common upper-level framework, taxonomies can 
be logically integrated and processed with computer algorithms. This insight is the lynchpin for semantic integration and governance.  

4 According to BFO, the functions, roles, and dispositions of material objects are called ‘realizable entities.” Material Objects 
are the bearers of these realisable entities, which are always realised by some ‘PROCESS’ ‒ e.g., ‘FIRES FUNCTION is 
realised only by some ‘FIRING PROCESS’.  

http://www.dia.mil/dico/tank/
http://www.dia.mil/dico/tank/USCENTCOM_TNK_000001
http://www.w3.org/Addressing/URL/uri-spec.html
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• Temporal Entities. The things that occur. These are processes and temporal intervals (i.e., spans of 
time). All processes require some agent to conduct them in order to be relevant to analysis. 
However, the act itself is an important entity to codify independent of the agent conducting it. 
Examples include: TIME INTERVAL, VEHICLE MOVEMENT, and MILITARY OPERATION. 

• Spatial Entities. This category includes both absolute locations, such as a geographic coordinate, 
and relative locations that are codified in BFO as SITES. SITES are one of the most abstract BFO 
entities but also very important to accurately describe a military location that is not a fixed facility. 
In a general sense, SITES are defined in relation to the boundaries that make them significant. 
A good example is a room. A room does not exist independent of its surrounding. It is an empty 
space that is only relevant because of the walls that enclose it. Additional spatial entities are 
SPATIAL REGIONS. These are absolute locations defined by a reference system with a common 
datum to all points in the system. Examples of spatial entities include: SURFACE TO AIR 
MISSILE SITE, AREA OF OPERATION, and VILLAGE.  

• Complex Entities.5 These are any combination of the above four categories of entities that are 
grouped together by virtue of their exhibiting some combination of characteristics that does not 
correspond to any universal (class). A good example is an EVENT which is a combination of some 
AGENT/s conducting some ACT at some LOCATION during some TIME INTERVAL.  

Additionally, it is helpful to describe the relationship forms used to formally relate Material Entities, 
Dependent Entities, and others. The DICO also formally specifies many relationships between entities, and 
data elements about them. This formalisation helps both the analyst and computer to reason with the data 
much more than can be accomplished using legacy relational databases. Relationships between entities 
(objects) are called Object Properties. For example: 

• PERSON (subject): 

• bearerOf (object property) DRIVER ROLE (object). 

• participatesIn (object property) VEHICLE MOVEMENT PROCESS (object). 

Lastly, the DICO formally specifies the relationships between entities and their attributes that are not 
codified as entities themselves. For example: 

• PERSON (subject): 

• hasGender (data property) male (literal value). 

These types of attributes of an object are often conflated with other entities so that the concepts such as 
“country of ownership,” “function of facility”, and “object dimension” are all listed in a relational database 
as attributes of the physical object. This logical imprecision leads to confusion and the inability to leverage 
many computational resources effectively to solve analytic problems6.  

Data values, the actual data related to an instance by a data property (e.g., the specific range of an aircraft), are 
contained in knowledge graphs or relational databases linked to the DICO. They are not contained as part of the 
DICO itself. The graph database that contains defence intelligence information of use by the DIAAE is called 
an object management service. Figure C-2 shows how the DICO and an OMS together provide a cohesive, 
standardised web of data connecting various external sources, annotated data, and the knowledge model.  

 
5 In ontology terms, these are also called “defined classes.” 
6 A good example of this issue are dates and geocoordinates. A tank does not “possess” a date or a geocoordinate so dates and 

coordinates should not be considered attributes of the tank. A person can make a leap in logic to understand the 
geo-coordinate is an attribute of a location at which the tank is stationed, but a computer cannot do that. However, a tank 
“does something” on a date and “is located” at a spot that has the geo-coordinate as an attribute. Once this is modelled 
correctly, the computer can understand the relationship between the tank and the geo-coordinate. 
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Figure C-2: Interacting with the DICO and OMS. 

Importantly, an OMS graph database does not need to contain all the spatio-temporal data that is collected on 
each object. To do so would require a complex graph database that must be continuously updated as mobile 
objects move around the battlespace. Instead, many such attributes of objects in an OMS can be linked to 
databases purposely built for such tasks. 

Lastly, successful implementation of the DICO for KRR depends on a combination of top-down and 
bottom-up modelling approaches to ensure alignment across all the application ontologies created according 
to the DICO. At DIA, the top-down piece is building the DICO from BFO and extending the model 
horizontally across all the domains of interest (e.g., analysis, Adversary COA development, infrastructure, 
order of battle, cyber operations, etc.). This ensures maximum interoperability of the models. More 
importantly, it ensures the formal representation of the models is also accurate and logical. After that core is 
created, one then proceeds bottom-up to ensure the ability to link the available data in the various domains to 
the knowledge model that has been carefully crafted to ensure the formal representation of the domains is 
accurate, logical, and fully inter-operable. Some of the process can be automated with tools such as NLP, but 
the initial linkage should be reviewed manually and a series of queries should be done to ensure the data is 
linked effectively. This top-down, bottom-up, then iterate is key to ensure effective deployment in the 
operational environment. 
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Annex D – KNOWLEDGE REPRESENTATION AND REASONING 
IN PRACTICE – THE WISDOM R&D PLATFORM 

D.1.1 THE WISDOM R&D PLATFORM

WISDOM is a R&D software platform [1]. It has been developed at Defence Research and Development 
Canada (DRDC), mainly under Project 05da: Joint Intelligence Collection and Analysis Capability (JICAC), 
and is meant to be a proof-of-concept prototype of an intelligence production support system. It is geared 
towards research in data/information/knowledge integration, fusion, analytics, management and exploitation, 
aiming at providing a capability to support the analysts and decision makers in developing their belief, 
opinion, judgment, or prediction about situations while these individuals are involved in situation analysis 
and decision-making activities. 

WISDOM is a federation of innovative, computer-based, composable and interoperable capability units 
provided in the form of an inventory of web services on a service-oriented architecture, thereby facilitating 
system integration and interoperability. These capability units can be integrated, interleaved and composed 
into overall, continuous process flows for the management and exploitation of data, information and 
knowledge, and supporting the individuals concerned with intelligence production, enabling and facilitating 
the creation and maintenance of enhanced situation awareness. 

WISDOM is a generic, domain agnostic platform reusable in different contexts and settings. It is composed 
of three main components:  

• The Sense making Support System (S3);

• The Knowledge Engineering Support System (KESS); and

• The Unified Data Space (UDaS).

The S3 is tailored to sense making, i.e., to the process of creating situation awareness in situations of 
uncertainty. It provides the capability required to exploit data, information and knowledge in a way that 
enables and facilitates the creation and maintenance of enhanced situation awareness for the end-user. 
It provides a suite of integrated components to support various analytical processes such as automated 
reasoning/inferencing, data correlation, temporal alignment, hypothesis management, list-based processing, 
text analytics, and visualisation on a map, which all play a key role in the examination of a situation, 
its elements, and their relations, to provide and maintain a product, i.e., a state of situation awareness, for the 
analysts and/or decision makers. 

A large portion of the current version of WISDOM makes use of knowledge-based systems technologies. 
Aligned with this, the KESS component of WISDOM provides a user-friendly interface that makes the 
definition, specification and exploitation of knowledge representation artifacts easy for the knowledge 
engineers and/or the end-users of WISDOM. It enables the formal encoding of domain and expert knowledge 
in terms of ontologies, proposition templates, propositions, graphs, situation models, spatial features, case 
templates, cases, inference rules, text-based templates, analysis configurations, etc., and sets of such items. 

The UDS component of WISDOM is the least mature element. It is meant to be a central all-source, multi-int 
repository for all intelligence data, information and knowledge (sensed, observed, derived, etc.) currently 
available and related to the past, current and future situations of intelligence interest. Documents of all kinds 
can be ingested into the UDS, and documents can be retrieved from it. Among other things, the UDS must: 

• Provide an all-source, multi-int data integration framework;

• Provide a unifying data framework;
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• Provide a single interface to all data; 
• Provide a single access point to data, information and knowledge from heterogeneous sources; 
• Provide efficient search from a single point of access; 
• Be able to semantically align heterogeneous sources; 
• Be fully compatible with W3C Semantic Technologies; 
• Preserve the traceability of information; 
• Integrate and handle structured and unstructured contents; 
• Provide a scalable environment to deal with huge volumes of data (once the storage and processing 

capabilities has been aligned on the Big Data paradigm); 
• Provide a platform for data analytics; 
• Provide a solid foundation for the sense making support components; and 
• Enable both data pre-processing and data post-processing to support future requirements. 

D.2.1 WISDOM DATA STRATEGY 

A crucial aspect of the WISDOM R&D platform is the data strategy that has been developed to meet 
the challenging requirements for knowledge representation, as well as the demanding requirements for 
the persistence and exchange of data, information and knowledge. The former requirements are related 
to the exploitation of AI approaches and techniques (e.g., automated reasoning), while the latter are linked 
to the needs for interoperability between information processing services, agents and/or systems 
(i.e., machine-to-machine interoperability in distributed systems). DRDC has devoted significant effort to 
this aspect over the span of the JICAC project. 

A key design decision has been made very early for WISDOM to exploit multiple representation paradigms 
instead of adopting a single approach that would have to fit all contexts and settings. One objective was to 
exploit the collective, complementary strengths of many paradigms, while avoiding their individual pitfalls 
and weaknesses. Another objective was to fit the right solution to each problem instead of stretching the 
limits of a single approach while trying to force a match between this approach and a “non-fitting” problem 
(like using a screwdriver to knock a nail). Resulting from these considerations, multiple distinct data 
structures have been developed to tackle knowledge representation and exchange from various perspectives: 

• Propositions; 
• Graphs; 
• Situation models; 
• Spatial features; 
• Hypotheses; 
• Ontologies; 
• Inference rules; 
• Cases; 
• Case templates; 
• Kinematics and Geospatial Analysis Reasoning (KiGAR) configurations; 
• Temporal Analysis and Reasoning (TAR) configurations; and 
• Text-based templates. 
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Regarding knowledge representation requirements, the data structures listed above enable the representation 
of both situation knowledge and domain expert know-how (i.e., expertise). The former concerns knowledge 
about the various elements that constitute a situation of interest (e.g., persons, vehicles, buildings, 
organisations, weapons, etc.), the properties of these elements (e.g., age, colour, size, model, identification, 
etc.), and the relationships between the elements (e.g., is married with, works at, attacks, etc.). An example 
of domain expert know-how would be the anomaly detection knowledge of an analyst (typically acquired 
over years of experience) expressed as inference rules and/or cases previously encountered. 

The data structures listed above also enable data, information and knowledge exchange between services 
(e.g., the WISDOM component themselves), agents and/or systems. When dealing with the exchange 
requirements, there are two main aspects to consider: 1) The actual “content” that has to be exchanged, 
and 2) The “container” that will be used to achieve the actual transfer of the content between components. 
The WISDOM data structures address the second aspect. In this regard, they have been designed to be 
generic and domain/source agnostic. That is, the content that can be exchanged is not prescribed by the data 
structures; it can be anything, from any domain. This really provides great flexibility for exploitation in 
various contexts and settings. From the data, information and knowledge exchange perspective, the instances 
of the data structures are documents in Extensible Markup Language (XML) format that constitute Data 
Transfer Objects (DTOs). 

The WISDOM data structures can handle formal semantic data in addition to the typical data types (i.e., text, 
number, double, date, geometry, etc.). Hence, only when required, ontological formalism is used to handle 
semantics. Exploiting ontological formalism, when appropriate to do so, is considered a good practice, 
especially to support consistency across the system(s). However, it is not mandatory for the exploitation of 
the WISDOM data structures; it is optional. Moreover, one is not limited to a single ontology. Data from 
multiple ontologies (developed by and obtained from multiple providers) can be used simultaneously in the 
same instance of a WISDOM data structure. This also contributes to the exploitation flexibility. 

Another convenient characteristic is that the data structures have been conceived to be compatible one with 
the other, as they exploit the same set of data types. Also of particular interest is that data conversion services 
have been developed to automatically convert a set of instances of the proposition data structure into a single 
instance of the graph data structure, and the opposite, i.e., convert a single graph into a set of propositions. 

For usefulness, WISDOM provides the capability to create, retrieve, update and delete sets of instances of 
the proposition, spatial features, inference rule, case template and text-based template data structures. 

Finally, regarding the data, information and knowledge persistence/storage requirements, a distributed 
approach exploiting heterogeneous database technologies has been adopted for WISDOM. A set of distinct 
data access services has been developed for this purpose. These services implement Create, Retrieve, Update 
and Delete (CRUD) operations on instances of the WISDOM data structures. Dedicated GUI components 
exist in WISDOM for the end-users to interact with these services. 

D.2.1.1 Automated Reasoning Capability of the WISDOM R&D Platform 
Automated inferencing/reasoning is a topic that has been devoted significant R&D efforts in a number of 
DRDC projects. All of these efforts have converged into the WISDOM R&D platform under the JICAC 
project. Figure D-1 illustrates the components of the current automated reasoning capability of WISDOM. 

The capability is made of five reasoning services, each one implementing a distinct reasoning paradigm 
(rule-based, case-based, description logic, etc.). The multi-reasoner inferencing service can also be utilised as 
an orchestration service for the exploitation of the individual reasoning services. As can clearly be seen on 
Figure D-1, the proposition data structure plays a key role for data exchange in this automated reasoning 
capability; each automated reasoning service consumes propositions at its input, and it generates propositions 
(as results of the inferencing process) at its output. 
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Figure D-1: WISDOM Automated Reasoning Capability. 

D.3.1 REFERENCES 
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Annex E – UNCERTAINTY MANAGEMENT 

In this annex, we provide a high level overview of the fundamentals of uncertainty management, in the 
context of KRR. This summary draws on a number of core references [1], [2], [3], [4].  

Most tasks requiring intelligent behaviour have some degree of uncertainty associated with them. The 
uncertainty that can occur in knowledge-based systems may be caused by problems with the data. For example:  

• Data might be missing or unavailable; 
• Data might be present but unreliable or ambiguous due to measurement errors; 
• The representation of the data may be imprecise or inconsistent; 
• Data may just be user’s best guess; and/or 
• Data may be based on defaults and the defaults may have exceptions.  

The uncertainty may also be caused by the represented knowledge, since it might: 
• Represent best guesses of the experts that are based on plausible or statistical associations they have 

observed; and/or 
• Not be appropriate in all situations (e.g., may have indeterminate applicability). 

Given such numerous sources of errors, most knowledge-based systems require the incorporation of some 
form of uncertainty management. 

When implementing an uncertainty scheme, one must be concerned with three issues: 
• How to represent uncertain data; 
• How to combine two or more pieces of uncertain data; and 
• How to draw inference using uncertain data. 

Through a review of the main typologies proposed in the literature, Jousselme et al. [1] consider a number of 
problems regarding the different types of uncertainty, the different epistemic interpretations, the different 
mathematical representations, in order to better understand and use the existing mathematical formalisms for 
reasoning under uncertainty.  

E.1.1 UNCERTAINTY TYPOLOGY/TAXONOMY 
Although it is possible to use semantic markup languages such as OWL to represent qualitative and 
quantitative information about uncertainty, there is no established foundation for doing so. Therefore, each 
developer must come up with his/her own set of constructs for representing uncertainty. This is a major 
liability in many environments that are dependent on interoperability among systems and applications. 
Moreover, apart from the interoperability issues caused by proprietary uncertainty representations, there are 
ancillary issues such as how to balance representational power vs. simplicity of uncertainty representations, 
which uncertainty representation technique(s) addresses use cases, how to ensure the consistency of 
representational formalisms and ontologies, etc. 

Jousselme et al. [1] provide a discussion on uncertainty in the context of situation analysis. An overview of the 
principal typologies of uncertainty found in the literature at that time is presented, and the authors try to 
highlight useful distinctions. The wide array of uncertainty conceptions presented is a consequence of the 
intrinsic richness and ambiguity of natural language, but also a consequence of the complex nature 
of information.  
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Definitions of a limited number of concepts are provided in that work to illustrate and discuss the different 
facets of uncertainty. The benefits sought are:  

• The avoidance of untimely uses of definitions and models of uncertainty; 

• Clarifications allowing links with the already well developed logics of knowledge and belief; and 

• Guidelines for the selection of the appropriate mathematical model to process uncertainty-based 
information. 

E.2.1 WHAT IS UNCERTAINTY? 

Uncertainty is a widely used term in the AI and engineering communities [5]. However, the authors in these 
fields of application and research do not always agree on the meaning of uncertainty, on its different types, on 
the possible sources, on the synonyms, on possible classifications, on representations, etc. In Laskey et al. [2] 
the term “uncertainty” is intended to encompass a variety of aspects of imperfect knowledge. 

Jousselme et al. [1] attempt to clarify the concept of uncertainty and related concepts. They start with general 
definitions of uncertainty, provide a sociological point of view, and describe different visions of uncertainty 
that were proposed by some authors working in the AI and engineering areas. 

Uncertainty has two main manifestations in most of the classical dictionaries. 

• Uncertainty as a state of mind; and 

• Uncertainty as a physical property of information. 

The first refers to the state of mind of an agent, which does not possess the needed information or knowledge 
to make a decision; the agent is in a state of uncertainty: “I’m not sure that this object is a table”. The 
second refers to a physical property, representing the limitation of perception systems: “The length of this 
table is uncertain”. 

In theories of uncertain reasoning, uncertainty is often described as imperfection of information, as errors on 
measures for example, and does not depend on any kind of state of mind. However, uncertain information 
can induce some uncertainty in our mind. 

E.3.1 FORMALISMS FOR UNCERTAINTY MANAGEMENT 

The term “uncertainty reasoning” is meant to denote the full range of methods designed for representing and 
reasoning with knowledge when Boolean truth values are unknown, unknowable, or inapplicable. To 
illustrate, consider a few reasoning challenges that could be addressed by reasoning under uncertainty: 

• Automated agents are used to exchange information that in many cases is not perfect. Thus, a 
standardised format for representing uncertainty would allow agents receiving imperfect information 
to interpret it in the same way as was intended by the sending agents. 

• Much information is likely to be uncertain. Examples include weather forecasts or gambling odds. 
Canonical methods for representing and integrating such information are necessary for 
communicating it in a seamless fashion. 

• Information is also often incorrect or only partially correct, raising issues related to trust or 
credibility. Uncertainty representation and reasoning helps to resolve tension amongst information 
sources having different confidence and trust levels. 
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• Many visions rely on numerous distinct but conceptually overlapping ontologies that co-exist and 
interoperate. It is likely that in such scenarios, ontology mapping will benefit from the ability to 
represent degrees of membership and/or likelihoods of membership in categories of a target 
ontology, given information about class membership in the source ontology. 

• Dynamic composability of services requires runtime identification of processing and data resources 
and resolution of policy objectives. Uncertainty reasoning techniques may be necessary to resolve 
situations in which existing information is not definitive. 

• Information extracted from large information networks is typically incomplete. The ability to exploit 
partial information is very useful for identifying sources of service or information. It is clear that 
search effectiveness could be improved by appropriate use of technologies for handling uncertainty. 

As work with semantics and services grows more ambitious, there is increasing appreciation of the need for 
principled approaches to representing and reasoning under uncertainty. 

To model uncertainty, many mathematical tools have been developed, being either qualitative such as modal 
or nonmonotonic logics, or quantitative approaches such as probability theory, fuzzy sets theory, or 
evidential theory. These approaches are often compared on the basis of their different strengths 
and weaknesses: 

• Their better suitability to model a particular type of uncertainty; 

• Their requirement for prior knowledge; 

• Their computational time complexity; 

• The need for independence constraints; and 

• Their reasoning capacities. 

E.4.1 REFERENCES 

[1] Jousselme, A.L., Maupin, P. and Bosse, E. (2003). Uncertainty in a Situation Analysis Perspective, 
IEEE. 2, pp. 1207-1214. 

[2] Laskey, K., Laskey, K., Costa, P., Kokar, M., Martin T., and Lukasiewicz, T. (2008). Uncertainty 
Reasoning for the World Wide Web: Report on the URW3-XG Incubator Group. United States, 
North America. 

[3] Costa, P.C.G., Laskey, K.B., Blasch, E. and Jousselme, A.L. (2012). Towards Unbiased Evaluation of 
Uncertainty Reasoning: The URREF Ontology, IEEE, pp. 2301-2308. 

[4] University of Illinois. (2020). Chapter 4. Reasoning Under Uncertainty. Retrieved 01 May 2020, 2020, 
from https://www.cs.uic.edu/~liub/teach/cs511-spring-06/cs511-uncertainty.doc. 

[5] Bosse, E., Roy, J. and Wark, S. (2007). Concepts, Models, and Tools for Information Fusion, 
Artech House. 
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